An algebraic multigrid method in problems of computational physics


  • K.N. Volkov D.F. Ustinov Baltic State Technical University «Voenmekh»
  • Yu.N. Deryugin Russian Federal Nuclear Center – All-Russian Scientific Research Institute of Experimental Physics
  • V.N. Emelyanov D.F. Ustinov Baltic State Technical University «Voenmekh»
  • A.S. Kozelkov Russian Federal Nuclear Center – All-Russian Scientific Research Institute of Experimental Physics
  • I.V. Teterina D.F. Ustinov Baltic State Technical University «Voenmekh»


multigrid methods, interpolation, smoothing, computational physics


Implementation features and application of the algebraic multigrid methods to the solution of systems of difference equations resulting from the discretization of partial differential equations are considered. A number of approaches to the generation of C/F coarsening (standard coarsening and RS-coarsening), to the interpolation (direct interpolation, indirect interpolation, standard interpolation, and amg1r5 interpolation), and to the smoothing (iterative schemes) are discussed. Different storing formats for sparse matrices are used to calculate the Galerkin products. The results of numerical solving several model equations of mathematical physics are reported. The efficiency of the proposed approach is compared when using different components of the computational procedure.

Author Biographies

K.N. Volkov

Yu.N. Deryugin

V.N. Emelyanov

A.S. Kozelkov

I.V. Teterina


  1. Brandt A. Multi-level adaptive solutions to boundary-value problems // Math. Comput. 1977. 31, N 138. 333-390.
  2. Brandt A. Guide to multigrid development // Lecture Notes in Mathematics. Vol. 960. Heidelberg: Springer, 1982. 220-312.
  3. Wesseling P. An introduction to multigrid methods. Chichester: Wiley, 1992.
  4. Волков К.Н. Многосеточные технологии для решения задач газовой динамики на неструктурированных сетках // Журн. вычислит. матем. и матем. физики. 2010. 50, № 11. 1938-1952.
  5. Cleary A.J., Falgout R.D., Henson V.E., Jones J.E., Manteuffel T.A., McCormick S.F., Miranda G.N., Ruge J.W. Robustness and scalability of algebraic multigrid (AMG), // SIAM J. on Scientific and Statistical Computing. 2000. 21, N 5. 1886-1908.
  6. Ruge J., StHuben K. Algebraic multigrid (AMG) // Multigrid Methods. Frontiers in Applied Mathematics. Vol. 3. Philadelphia: SIAM, 1987. 73-130.
  7. StHuben K. A review of algebraic multigrid // J. of Computational and Applied Mathematics. 2001. 128, N 1/2. 281-309.
  8. StHuben K. An introduction to algebraic multigrid // Multigrid.
  9. Vanvek P., Mandel J., Brezina M. Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems // Computing. 1996. 56, N 3. 179-196.
  10. Emans M. Performance of parallel AMG-preconditioners in CFD-codes for weakly compressible flows // Parallel Computing. 2010. 36, N 5/6. 326-338.
  11. Notay Y. An aggregation-based algebraic multigrid method // Electronic Transactions on Numerical Analysis. 2010. 37. 123-146.
  12. Yang U.M. Parallel algebraic multigrid methods - high performance preconditioners // Numerical Solution of Partial Differential Equations on Parallel Computers.
  13. Henson V.E., Yang U.M. BoomerAMG: a parallel algebraic multigrid solver and preconditioner // Applied Numerical Mathematics. 2002. 41, N 1. 155-177.
  14. Saad Y. Iterative methods for sparse linear systems. Philadelphia: SIAM, 2003.
  15. Griebel M., Metsch B., Oeltz D., Schweitzer M.A. Coarse grid classification: a parallel coarsening scheme for algebraic multigrid methods // Numer. Linear Algebra Appl. 2006. 13, N 2/3. 193-214.
  16. Griebel M., Metsch B., Schweitzer M.A. Coarse grid classification: AMG on parallel computers. Technical Report N 368. University of Bonn, Bonn, 2008.
  17. Oosterlee C.W. The convergence of parallel multiblock multigrid methods // Applied Numerical Mathematics. 1995. 19, N 1/2. 115-128.
  18. Livne O.E., Brandt A. Lean algebraic multigrid (LAMG): fast graph Laplacian linear solver // SIAM J. on Scientific Computing. 2012. 34, N 4. B499-B522.
  19. Suero R., Pinto M.A. V., Marchi C.H., Araki L.K., Alves A.C. Analysis of algebraic multigrid parameters for two-dimensional steady-state heat diffusion equations // Applied Mathematical Modelling. 2012. 36, N 7. 2996-3006.
  20. Reusken A. Convergence analysis of a multigrid method for convection-diffusion equations // Numer. Math. 2002. 91, N 2. 323-349.



How to Cite

Волков К.Н., Дерюгин Ю.Н., Емельянов В.Н., Козелков А.С., Тетерина И.В. An Algebraic Multigrid Method in Problems of Computational Physics // Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie). 2014. 15. 183-200



Section 1. Numerical methods and applications

Most read articles by the same author(s)

1 2 3 4 > >>