Stability of three-layer finite difference-based lattice Boltzmann schemes

Authors

  • G.V. Krivovichev
  • S.A. Mikheev

Keywords:

lattice Boltzmann method
lattice Boltzmann schemes
stability with respect to initial conditions
Neumann method

Abstract

Stability of three-layer finite difference-based lattice Boltzmann schemes is studied. The time derivative is approximated by the central difference. The stability analysis with respect to initial conditions is performed. The Neumann method is used. It is shown that the stability of the schemes can be improved by the usage of averages of distribution function values on the nearest time layers. It is also shown that the usage of special approximations for the convective terms in the kinetic equations allows one to increase the stability domains in comparison with the case of the schemes with separate approximations of spatial derivatives.


Published

2014-04-06

Issue

Section

Section 1. Numerical methods and applications

Author Biographies

G.V. Krivovichev

St Petersburg University
• Associate Professor

S.A. Mikheev


References

  1. Chen S., Doolen G.D. Lattice Boltzmann method for fluid flows // Annu. Rev. Fluid Mech. 1998. 30. 329-364.
  2. Nourgaliev R.R., Dinh T.N., Theofanous T.G., Joseph D. The lattice Boltzmann equation method: theoretical interpretation, numerics and implications // Int. J. Multiphase Flow. 2003. 29. 117-169.
  3. Delbosc N., Summers J.L., Khan A.I., Kapur N., Noakes C.J. Optimized implementation of the lattice Boltzmann method on a graphics processing unit toward real-time fluid simulation // Comput. Math. Appl. 2014. 67, N 2. 462-475.
  4. Грачев Н.Е., Дмитриев А.В., Сенин Д.С. Моделирование динамики газа при помощи решеточного метода Больцмана // Вычислительные методы и программирование. 2011. 12. 227-231.
  5. Бикулов Д.А., Сенин Д.С., Демин Д.С., Дмитриев А.В., Грачев Н.Е. Реализация метода решеточных уравнений Больцмана для расчетов на GPU-кластере // Вычислительные методы и программирование. 2012. 13. 13-19.
  6. Бикулов Д.А., Сенин Д.С. Реализация метода решеточных уравнений Больцмана без хранимых значений функций распределения для GPU // Вычислительные методы и программирование. 2013. 14. 370-374.
  7. Куперштох А.Л. Трехмерное моделирование двухфазных систем типа жидкость-пар методом решеточных уравнений Больцмана на GPU // Вычислительные методы и программирование. 2012. 13. 130-138.
  8. Куперштох А.Л. Трехмерное моделирование методом LBE на гибридных GPU-кластерах распада бинарной смеси жидкого диэлектрика с растворенным газом на систему парогазовых каналов // Вычислительные методы и программирование. 2012. 13. 384-390.
  9. Kupershtokh A.L. Three-dimensional LBE simulations of a decay of liquid dielectrics with a solute gas into the system of gas-vapor channels under the action of strong electric fields // Comput. Math. Appl. 2014. 67, N 2. 340-349.
  10. Lin L.-S., Chang H.-W., Lin C.-A. Multi relaxation time lattice Boltzmann simulations of transition in deep 2D lid driven cavity using GPU // Computers &; Fluids. 2013. 80. 381-387.
  11. Zhao Z., Huang P., Li Y., Li J. A lattice Boltzmann method for viscous free surface waves in two dimensions // International Journal for Numerical Methods in Fluids. 2013. 71, N 2. 223-248.
  12. Yong Y., Lou X., Li S., Yang C., Yin X. Direct simulation of the influence of the pore structure on the diffusion process in porous media // Computers and Mathematics with Applications. 2014. 67, N 2. 412-423.
  13. Seta T., Takahashi R. Numerical stability analysis of FDLBM // Journal of Statistical Physics. 2002. 107, N 1/2. 557-572.
  14. Sofonea V., Sekerka R.F. Viscosity of finite difference lattice Boltzmann models // Journal of Computational Physics. 2003. 184, N 2. 422-434.
  15. Tsutahara M. The finite-difference lattice Boltzmann method and its application in computational aeroacoustics // Fluid Dynamics Research. 2012. 44, N 4. 045507-045525.
  16. Кривовичев Г.В. Исследование устойчивости явных конечноразностных решеточных кинетических схем Больцмана // Вычислительные методы и программирование. 2012. 13. 332-340.
  17. Кривовичев Г.В. Об устойчивости конечно-разностных решеточных схем Больцмана // Вычислительные методы и программирование. 2013. 14. 1-8.
  18. Broadwell J.E. Study of rarefied shear flow by the discrete velocity method // Journal of Fluid Mechanics. 1964. 19, N 3. 401-414.
  19. Abe T. Derivation of the lattice Boltzmann method by means of the discrete ordinate method for the Boltzmann equation // Journal of Computational Physics. 1997. 131, N 1. 241-246.
  20. Sterling J.D., Chen S. Stability analysis of lattice Boltzmann methods // Journal of Computational Physics. 1996. 123, N 1. 196-206.
  21. Рихтмайер Р., Мортон К. Разностные методы решения краевых задач. М.: Мир, 1972.
  22. Smith B.T., Boyle J.M., Dongarra J.J., Garbow B.S., Ikebe Y., Klema V.C., Moler C.B. Matrix Eigensystem Routines. EISPACK Guide. Heidelberg: Springer, 1976.
  23. Taghilou M., Rahimian M.H. Investigation of two-phase flow in porous media using lattice Boltzmann method // Computers and Mathematics with Applications. 2014. 67, N 2. 424-436.
  24. Cho H., Jeong N., Sung H.J. Permeability of microscale fibrous porous media using the lattice Boltzmann method // International Journal of Heat and Fluid Flow. 2013. 44. 435-443.

 How to cite   
Ivanov B.N. A geometric approach to solving the problem of tracking cyclones and anticyclones // Numerical Methods and Programming. 2014. 15, No 2. 370–382.

TEX CODE:

Ivanov B. , (2014) “A geometric approach to solving the problem of tracking cyclones and anticyclones,” Numerical Methods and Programming, vol. 15, no. 2, pp. 370–382.

TEX CODE:

B. Ivanov, “A geometric approach to solving the problem of tracking cyclones and anticyclones,” Numerical Methods and Programming 15, no. 2 (2014): 370–382

TEX CODE:

Ivanov B. A geometric approach to solving the problem of tracking cyclones and anticyclones. Numerical Methods and Programming. 2014;15(2):370–382.(In Russ.).

TEX CODE: