WTT decomposition for the compression of array’s families and its application to image processing


  • P.V. Kharyuk Lomonosov Moscow State University
  • I.V. Оseledets Institute of Numerical Mathematics of RAS (INM RAS)


numerical tensor methods, wavelet transform, Wavelet Tensor Train decomposition, Tensor Train decomposition, data compression


The application of Wavelet Tensor Train decomposition to the compression of array’s families to image processing is considered. The WTT decomposition is an algebraic technique for the construction of adaptive wavelet transforms. Its main disadvantage is that it requires to store filters for each image. A new approach is proposed on the basis of the construction of a single filter for a sequence of images.

Author Biographies

P.V. Kharyuk

I.V. Оseledets


  1. Daubechies I. Ten lectures on wavelets. Philadelphia: SIAM, 1992.
  2. Stankovi’c R.S., Falkowski B.J. The Haar wavelet transform: its status and achievements // Comput. Electr. Eng. 2003. 29, N 1. 25-44.
  3. Sweldens W. The lifting scheme: a custom-design construction of biorthogonal wavelets // Appl. Comput. Harmon. Anal. 1996. 3, N 2. 186-200.
  4. Demirel H., Anbarjafari G. Image resolution enhancement by using discrete and stationary wavelet decomposition // IEEE Trans. Image Process. 2011. 20, N 5. 1458-1460.
  5. Sulochana S., Vidhya R. Satellite image contrast enhancement using multiwavelets and singular value decomposition (SVD) // Int. J. Comput. Appl. 2011. 35, N 7. 1-5.
  6. Canales-Rodr’iguez E.J., Radua J., Pomarol-Clotet E., et al. Statistical analysis of brain tissue images in the wavelet domain: wavelet-based morphometry // NeuroImage. 2013. 72. 214-226.
  7. Patil M.M., Yardi A.R. Classification of 3D magnetic resonance images of brain using discrete wavelet transform // Int. J. Comput. Appl. 2011. 31, N 7. 23-27.
  8. Omerhodzic I., Avdakovic S., Nuhanovic A., Dizdarevic K. Energy distribution of EEG signals: EEG signal wavelet-neural network classifier // World Acad. Sci. Eng. Technol. 2010. 61. 1190-1195.
  9. Oseledets I.V., Tyrtyshnikov E.E. Algebraic wavelet transform via quantics tensor train decomposition // SIAM J. Sci. Comput. 2011. 33, N 3. 1315-1328.
  10. Kazeev V.A., Oseledets I.V. The tensor structure of a class of adaptive algebraic wavelet transforms. Preprint N 2013-28. Zürich: Swiss Federal Institute of Technology, 2013.
  11. Oseledets I.V. Tensor-train decomposition // SIAM J. Sci. Comput. 2011. 33, N 5. 2295-2317.
  12. Oseledets I.V. Approximation of 2^d imes 2^d matrices using tensor decomposition // SIAM J. Matrix Anal. Appl. 2010. 31, N 4. 2130-2145.
  13. Khoromskij B.N. O(d log N)-quantics approximation of N-d tensors in high-dimensional numerical modeling // Constr. Appr. 2011. 34, N 2. 257-280.
  14. Оселедец И.В. О приближении матриц логарифмическим числом параметров // Докл. АН. 2009. 428, № 1. 23-24.



How to Cite

Харюк П.В., Оселедец И.В. WTT Decomposition for the Compression of array’s Families and Its Application to Image Processing // Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie). 2014. 15. 229-238



Section 1. Numerical methods and applications