WTT decomposition for the compression of array’s families and its application to image processing

Authors

  • P.V. Kharyuk
  • I.V. Оseledets

Keywords:

numerical tensor methods
wavelet transform
Wavelet Tensor Train decomposition
Tensor Train decomposition
data compression

Abstract

The application of Wavelet Tensor Train decomposition to the compression of array’s families to image processing is considered. The WTT decomposition is an algebraic technique for the construction of adaptive wavelet transforms. Its main disadvantage is that it requires to store filters for each image. A new approach is proposed on the basis of the construction of a single filter for a sequence of images.


Published

2014-04-10

Issue

Section

Section 1. Numerical methods and applications

Author Biographies

P.V. Kharyuk

I.V. Оseledets


References

  1. Daubechies I. Ten lectures on wavelets. Philadelphia: SIAM, 1992.
  2. Stankovi’c R.S., Falkowski B.J. The Haar wavelet transform: its status and achievements // Comput. Electr. Eng. 2003. 29, N 1. 25-44.
  3. Sweldens W. The lifting scheme: a custom-design construction of biorthogonal wavelets // Appl. Comput. Harmon. Anal. 1996. 3, N 2. 186-200.
  4. Demirel H., Anbarjafari G. Image resolution enhancement by using discrete and stationary wavelet decomposition // IEEE Trans. Image Process. 2011. 20, N 5. 1458-1460.
  5. Sulochana S., Vidhya R. Satellite image contrast enhancement using multiwavelets and singular value decomposition (SVD) // Int. J. Comput. Appl. 2011. 35, N 7. 1-5.
  6. Canales-Rodr’iguez E.J., Radua J., Pomarol-Clotet E., et al. Statistical analysis of brain tissue images in the wavelet domain: wavelet-based morphometry // NeuroImage. 2013. 72. 214-226.
  7. Patil M.M., Yardi A.R. Classification of 3D magnetic resonance images of brain using discrete wavelet transform // Int. J. Comput. Appl. 2011. 31, N 7. 23-27.
  8. Omerhodzic I., Avdakovic S., Nuhanovic A., Dizdarevic K. Energy distribution of EEG signals: EEG signal wavelet-neural network classifier // World Acad. Sci. Eng. Technol. 2010. 61. 1190-1195.
  9. Oseledets I.V., Tyrtyshnikov E.E. Algebraic wavelet transform via quantics tensor train decomposition // SIAM J. Sci. Comput. 2011. 33, N 3. 1315-1328.
  10. Kazeev V.A., Oseledets I.V. The tensor structure of a class of adaptive algebraic wavelet transforms. Preprint N 2013-28. Zürich: Swiss Federal Institute of Technology, 2013.
  11. Oseledets I.V. Tensor-train decomposition // SIAM J. Sci. Comput. 2011. 33, N 5. 2295-2317.
  12. Oseledets I.V. Approximation of 2^d imes 2^d matrices using tensor decomposition // SIAM J. Matrix Anal. Appl. 2010. 31, N 4. 2130-2145.
  13. Khoromskij B.N. O(d log N)-quantics approximation of N-d tensors in high-dimensional numerical modeling // Constr. Appr. 2011. 34, N 2. 257-280.
  14. Оселедец И.В. О приближении матриц логарифмическим числом параметров // Докл. АН. 2009. 428, № 1. 23-24.

 How to cite   
Ivanov B.N. A geometric approach to solving the problem of tracking cyclones and anticyclones // Numerical Methods and Programming. 2014. 15, No 2. 370–382.

TEX CODE:

Ivanov B. , (2014) “A geometric approach to solving the problem of tracking cyclones and anticyclones,” Numerical Methods and Programming, vol. 15, no. 2, pp. 370–382.

TEX CODE:

B. Ivanov, “A geometric approach to solving the problem of tracking cyclones and anticyclones,” Numerical Methods and Programming 15, no. 2 (2014): 370–382

TEX CODE:

Ivanov B. A geometric approach to solving the problem of tracking cyclones and anticyclones. Numerical Methods and Programming. 2014;15(2):370–382.(In Russ.).

TEX CODE: