Numerical conditioning analysis of two-dimensional problems in electrical impedance tomography


  • S.V. Gavrilov Lomonosov Moscow State University


electrical impedance tomography, piecewise constant conductivity, numerical conditioning


A two-dimensional problem of electrical impedance tomography with a piecewise constant electrical conductivity with two known values is considered. It is required to determine the unknown boundary between the domains of different conductivities. The measurements of electric field characteristics on the outer boundary of the medium under study are used as initial data. The numerical conditioning analysis of this problem is performed with a respect to the type and number of electrical potential excitations at the outer boundary. It is assumed that the class of curves representing the unknown inhomogeneity boundary is defined by a finite set of parameters. With a certain accuracy of initial data, the electrical impedance problem is solved numerically in this class of curves.

Author Biography

S.V. Gavrilov


  1. Borcea L. Electrical impedance tomography // Inverse Problems. 2002. 18. 99-136.
  2. Holder D.S. (Ed.) Electrical impedance tomography: methods, history and applications. Bristol: Institute of Physics Publishing, 2005.
  3. Calder’on A.P. On an inverse boundary value problem // Seminar on Numerical Analysis and Its Applications to Continuum Physics. Rio de Janeiro: Soc. Brasileira de Matematica, 1980. 65-73.
  4. Alessandrini G., Isakov V. Analyticity and uniqueness for the inverse conductivity problem // Rend. Ist. Mat. Univ. Trieste. 1996. 28. 351-369.
  5. Barcel’o B., Fabes E., Seo J.K. The inverse conductivity problem with one measurement: uniqueness for convex polyhedra // Proc. Amer. Math. Soc. 1994. 122, N 1. 183-189.
  6. Bellout H., Friedman A., Isakov V. Stability for an inverse problem in potential theory // Trans. Amer. Math. Soc. 1992. 332, N 1. 271-296.
  7. Astala K., Päivärinta L. Calder’on’s inverse conductivity problem in the plane // Ann. Math. 2006. 163. 265-299.
  8. Kang H., Seo J.K. The layer potential technique for the inverse conductivity problem // Inverse Problems. 1996. 12, N 3. 267-278.
  9. Brühl M., Hanke M. Numerical implementation of two noniterative methods for locating inclusions by impedance tomography // Inverse Problems. 2000. 16, N 4. 1029-1042.
  10. Eckel H., Kress R. Nonlinear integral equations for the inverse electrical impedance problem // Inverse Problems. 2007. 23, N 2. 475-491.
  11. Ts M.-E., Lee E., Seo J.K., Harrach B., Kim S. Projective electrical impedance reconstruction with two measurements // SIAM Journal on Applied Mathematics. 2013. 73, N 4. 1659-1675.
  12. Lee E., Ts M.-E., Seo J.K., Woo E.J. Breast EIT using a new projected image reconstruction method with multi-frequency measurements // Physiological Measurement. 2012. 33, N 5. 751-765.
  13. Seo J.K., Kwon O., Ammari H., Woo E.J. A mathematical model for breast cancer lesion estimation: electrical impedance technique using TS2000 commercial system // IEEE Trans. Biomed. Eng. 2004. 51, N 11. 1898-1906.
  14. Kwon O., Seo J.K., Yoon J.R. A real-time algorithm for the location search of discontinuous conductivities with one measurement // Comm. Pure Appl. Math. 2002. 55, N 1. 1-29.
  15. Kang H., Seo J.K., Sheen D. Numerical identification of discontinuous conductivity coefficients // Inverse Problems. 1997. 13, N 1. 113-123.
  16. Knudsen K., Lassas M., Mueller J.L., Siltanen S. Regularized D-bar method for the inverse conductivity problem // Inverse Problems and Imaging. 2009. 3, N 4. 599-624.
  17. Денисов А.М., Захаров Е.В., Калинин А.В., Калинин В.В. Численные методы решения некоторых обратных задач электрофизиологии сердца // Дифференциальные уравнения. 2009. 45, № 7. 1014-1022.
  18. Гаврилов С.В., Денисов А.М. Численные методы определения границы неоднородности в краевой задаче для уравнения Лапласа в кусочно-однородной среде // Ж. вычисл. матем. и матем. физ. 2011. 51, № 8. 1476-1489.
  19. Гаврилов С.В. Итерационный метод решения трехмерной задачи электроимпедансной томографии в случае кусочно-постоянной проводимости и нескольких измерений на границе // Вычислительные методы и программирование. 2013. 14. 26-30.



How to Cite

Гаврилов С.В. Numerical Conditioning Analysis of Two-Dimensional Problems in Electrical Impedance Tomography // Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie). 2014. 15. 329-336



Section 1. Numerical methods and applications