New a posteriori error estimates for approximate solutions to iregular operator equations

Authors

  • A.B. Bakushinsky Institute for Systems Analysis of RAS (ISA RAS)
  • A.S. Leonov National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Keywords:

irregular operator equations, a posteriori estimation of the accuracy, iteratively regularized processes of Gauss-Newton type

Abstract

A brief overview of developed up to date a posteriori error estimates for approximate solutions to irregular operator equations is given. Among them are a posteriori estimates for some descriptive expanding compacts (A.G. Yagola, etc.), the evaluation using a posteriori residual values and regularizing functionals (A.S. Leonov), the estimates with more detailed a priori assumptions about solutions (A.B. Bakushinsky, etc.), estimating the accuracy of solutions to coefficient inverse problems for partial differential equations using the specifics of the Tikhonov regularization and the adaptive finite element method (L. Beilina, M. Klibanov, etc.). In this paper a new method for a posteriori estimates of the accuracy of approximate solutions calculated using the iterative procedures for irregular operator equations is proposed. The estimates are found using other a posteriori functionals of approximate solutions than in the overviewed papers. In this method, one can track the evolution of a posteriori estimates in solving the equation, which allows one to draw conclusions about iteration convergence and to introduce adequate improvements in the iterative procedures during their implementation.

Author Biographies

A.B. Bakushinsky

A.S. Leonov

References

  1. Винокуров В.А., Гапоненко Ю.Л. Апостериорные оценки погрешности решения некорректных обратных задач // Доклады АН СССР. 1982. 263, № 2. 277-280.
  2. Дорофеев К.Ю., Титаренко В.Н., Ягола А.Г. Алгоритмы построения апостериорных погрешностей решения для некорректных задач // Журн. вычисл. матем. и матем. физики. 2003. 43, № 1. 12-25.
  3. Dorofeev K.Yu., Yagola A.G. The method of extending compacts and a posteriori error estimates for nonlinear ill-posed problems // J. Inverse Ill-Posed Probl. 2004. 12, N 6. 627-636.
  4. Yagola A., Titarenko V. Using a priori information about a solution of an ill-posed problem for constructing regularizing algorithms and their applications // Inv. Problems Sci. Eng. 2007. 15, N 1. 3-17.
  5. Леонов А.С. Об апостериорных оценках точности решения линейных некорректно поставленных задач и экстраоптимальных регуляризирующих алгоритмах // Вычислительные методы и программирование. 2010. 11. 14-24.
  6. Leonov A.S. Extraoptimal a posteriori estimates of the solution accuracy in the ill-posed problems of the continuation of potential geophysical fields // Izv. Phys. Solid Earth. 2011. 47, N 6. 531-540.
  7. Leonov A.S. A posteriori accuracy estimations of solutions to ill-posed inverse problems and extra-optimal regularizing algorithms for their solution // Numer. Analysis and Applications. 2012. 5, N 1. 68-83.
  8. Leonov A.S. Extra-optimal methods for solving ill-posed problems // J. of Inverse and Ill-Posed Problems. 2012. 20, N 5-6. 637-665.
  9. Леонов А.С. Поточечно экстраоптимальные регуляризующие алгоритмы // Вычислительные методы и программирование. 2013. 14. 215-228.
  10. Бакушинский А.Б. Апостериорные оценки погрешности приближенных решений нерегулярных операторных уравнений // Доклады АН. 2011. 437, № 4. 439-440.
  11. Bakushinsky A., Smirnova A., Liu H. A posteriori error analysis for unstable models // J. of Inverse and Ill-Posed Problems. 2012. 20, N 4. 411-428.
  12. Becker R., Rannacher R. An optimal control approach to a posteriori error estimation in finite element method // Acta Numerica. 2001. 10. 1-102.
  13. Beilina L., Johnson C. A posteriori error estimation in computational inverse scattering // Mathematical Models and Methods in Applied Sciences. 2005. 15, N 1. 23-37.
  14. Beilina L., Klibanov M.V. A globally convergent numerical method for a coefficient inverse problem // SIAM J. Sci. Comput. 2008. 31, N 1. 478-509.
  15. Beilina L., Klibanov M.V. A posteriori error estimates for the adaptivity technique for the Tikhonov functional and global convergence for a coefficient inverse problem // Inverse Problems. 2010. 26, N 4. Article Number: 045012.
  16. Bakushinsky A.B., Kokurin M.Yu. Iterative methods for approximate solution of inverse problems. Dordrecht: Springer, 2004.
  17. Bakushinsky A., Smirnova A. Irregular operator equations by iterative methods with undetermined reverse connection // J. of Inverse and Ill-Posed Problems. 2010. 18, N 2. 147-165.
  18. Бакушинский А.Б., Кокурин М.Ю. Алгоритмический анализ нерегулярных операторных уравнений. М.: ЛЕНАНД, 2012.
  19. Тихонов А.Н., Арсенин В.Я. Методы решения некорректных задач. М.: Наука, 1979.
  20. Леонов А.С. Решение некорректно поставленных обратных задач. Очерк теории, практические алгоритмы и демонстрации в МАТЛАБ. М.: ЛИБРОКОМ, 2010.
  21. Соловьёв В.В. Обратные задачи определения источника и коэффициента в эллиптическом уравнении в прямоугольнике // Журн. вычисл. матем. и матем. физики. 2007. 47, № 8. 1365-1377.

Published

09-06-2014

How to Cite

Бакушинский А.Б., Леонов А.С. New a Posteriori Error Estimates for Approximate Solutions to Iregular Operator Equations // Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie). 2014. 15. 359-369

Issue

Section

Section 1. Numerical methods and applications

Most read articles by the same author(s)