A geometric approach to solving the problem of tracking cyclones and anticyclones

Authors

Keywords:

cyclone trajectories, cyclone identification, cyclone tracking

Abstract

Initial data for tracking cyclones and anticyclones are the isolines of sea-level pressure and geopotential fields at standard heights. The isoline structure of such fields is characterized by its nesting and dynamic stability over time. The nesting of isolines is specified by cyclones and anticyclones. The isolines nesting of the original field is represented by the structure of rooted trees. The tree tracing allows one to extract the isolines of the centers and bases of cyclones and anticyclones. The identification of cyclones and anticyclones at various time instants is performed sequentially by overlapping the isolines. The continuation of a trajectory is specified by the cyclone (anticyclone) whose area of intersection with this cyclone base is maximal. The dimensions of cyclones and anticyclones are determined by the actual distance between their centers. For the typical displacements of cyclones (anticyclones), not exceeding the size of the bases, the proposed computing scheme is stable. For pressure and geopotential, the 3 hours interpolation interval for the initial data satisfies the above constraints. The proposed scheme of cyclone and anticyclone identification is of the most common character and is applicable to any type of fields if the isolines of such fields are characterized by their nesting and are stable with time. The scheme is based only on the isolines and does not use any unique properties of the fields.

Author Biography

B.N. Ivanov

References

  1. Иванов Б.Н. Решение задачи расчета оптимальных маршрутов судов в рамках геоинформационной системы «ОКЕАН» // Вычислительные методы и программирование. 2012. 13. 226-234.
  2. Иванов Б.Н. Структуры вложенности поля изолиний в задаче градиентного заполнения // Вычислительные методы и программирование. 2006. 7. 30-40.
  3. Neu U., Akperov M.G., Bellenbaum N., et al. IMILAST: a community effort to intercompare extratropical cyclone detection and tracking algorithms // Bull. Amer. Meteorol. Soc. 2013. 94, N 4. 529-547.
  4. Murray R.J., Simmonds I. A numerical scheme for tracking cyclone centres from digital data. Part I: development and operation of the scheme // Aust. Met. Mag. 1991. 39. 155-166.
  5. Sinclair M.R. An objective cyclone climatology for the Southern Hemisphere // Mon. Wea. Rev. 1994. 122, N 10. 2239-2256.
  6. Serreze M.C. Climatological aspects of cyclone development and decay in the Arctic // Atmos. Ocean. 1995. 33, N 1. 1-23.
  7. Sinclair M.R. Objective identification of cyclones and their circulation intensity, and climatology // Wea. Forecasting. 1997. 12, N 3. 595-612.
  8. Blender R., Fraedrich K., Lunkeit F. Identification of cyclone-track regimes in the North Atlantic // Quart. J. Roy. Meteor. Soc. 1997. 123, N 539. 727-741.
  9. Бардин М.Ю. Изменчивость характеристик циклоничности в средней тропосфере умеренных широт Северного полушария // Метеорология и гидрология. 1995. № 11. 24-37.
  10. Бардин М.Ю. Основные моды изменчивости повторяемости циклонов зимой в Атлантическом секторе // Метеорология и гидрология. 2000. № 1. 42-52.
  11. Bardin M.Yu., Polonsky A.B. North Atlantic oscillation and synoptic variability in the European-Atlantic region in winter // Izv. Atmos. Ocean. Phys. 2005. 41, N 2. 127-136.
  12. Akperov M.G., Bardin M.Yu., Volodin E.M., Golitsyn G.S., Mokhov I.I. Probability distributions for cyclones and anticyclones from the NCEP/NCAR reanalysis data and the INM RAS climate model // Izv. Atmos. Ocean. Phys. 2007. 43, N 6. 705-712.
  13. Акперов М.Г., Мохов И.И. Сравнительный анализ методов идентификации внетропических циклонов // Изв. АН. Физика атмосферы и океана. 2010. 46, № 5. 620-637.
  14. Gulev S.K., Zolina O., Grigoriev S. Extratropical cyclone variability in the Northern Hemisphere winter from the NCEP/NCAR reanalysis data // Clim. Dyn. 2001. 17, N 10. 795-809.
  15. Zolina O., Gulev S.K. Improving accuracy of mapping cyclone numbers and frequencies // Mon. Wea. Rev. 2002. 130. 748-759.
  16. Rudeva I., Gulev S.K. Climatology of cyclone size characteristics and their changes during the cyclone life cycle // Mon. Wea. Rev. 2007. 135. 2568-2587.
  17. Serreze M.C., Carse F., Barry R.G., et al. Icelandic low cyclone activity: Climatological features, linkages with the NAO and relationships with recent changes in the Northern Hemisphere circulation // J. Clim. 1997. 10, N 3. 453-464.
  18. Pinto J.G., Spangehl T., Ulbrich U., Speth P. Sensitivities of a cyclone detection and tracking algorithm: Individual tracks and climatology // Meteorol. Z. 2005. 14. 823-838.
  19. Benestad R.E., Chen D. The use of a calculus-based cyclone identification method for generating storm statistics // Tellus A. 2006. 58, N 4. 473-486.
  20. Hewson T.D., Titley H.A. Objective identification, typing and tracking of the complete life-cycles of cyclonic features at high spatial resolution // Meteorol. Appl. 2010. 17. 355-381.
  21. Trigo I.F. Climatology and interannual variability of storm-tracks in the Euro-Atlantic sector: a comparison between ERA-40 and NCEP/NCAR reanalyses // Clim. Dyn. 2006. 26. 127-143.
  22. Wang X.L., Swail V.R., Zwiers F.W. Climatology and changes of extratropical cyclone activity: comparison of ERA-40 with NCEP/NCAR reanalysis for 1958-2001 // J. Clim. 2006. 19, N 13. 3145-3166.
  23. Simmonds I., Burke C., Keay K. Arctic climate change as manifest in cyclone behavior // J. Clim. 2008. 21, N 22. 5777-5796.
  24. Hanley J., Caballero R. Objective identification and tracking of multicentre cyclones in the ERA-Interim reanalysis data set // Quart. J. Roy. Meteor. Soc. 2012. 138, N 664. 612-625.
  25. Raible C.C., Della-Marta P.M., Schwierz C., Wernli H., Blender R. Northern Hemisphere extratropical cyclones: a comparison of detection and tracking methods and different reanalyses // Mon. Wea. Rev. 2008. 136, N 3. 880-897.
  26. Lionello P., Dalan F., Elvini E. Cyclones in the Mediterranean region: the present and the doubled CO2 climate scenarios // Clim. Res. 2002. 22. 147-159.
  27. Wernli H., Schwierz C. Surface cyclones in the ERA-40 dataset (1958-2001). Part I: novel identification method and global climatology // J. Atmos. Sci. 2006. 63, N 10. 2486-2507.
  28. Kew S.F., Sprenger M., Davies H.C. Potential vorticity anomalies of the lowermost stratosphere: a 10-yr winter climatology // Mon. Wea. Rev. 2010. 138, N 4. 1234-1249.
  29. Inatsu M. The neighbor enclosed area tracking algorithm for extratropical wintertime cyclones // Atmos. Sci. Lett. 2009. 10, N 4. 267-272.
  30. Иванов Б.Н. Дискретная математика. Алгоритмы и программы. Расширенный курс. М.: Известия, 2011.
  31. Оре О. Теория графов. М.: Наука, 1980.

Published

15-06-2014

How to Cite

Иванов Б.Н. A Geometric Approach to Solving the Problem of Tracking Cyclones and Anticyclones // Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie). 2014. 15. 370-382

Issue

Section

Section 1. Numerical methods and applications