Numerical analysis of the FitzHugh-Nagumo model in a three-dimensional domain


  • I.A. Pavelchak


FitzHugh-Nagumo model
numerical methods
heart excitation
evolution systems of equations
initial boundary value problems
partial differential equations
inverse problems


The FitzHugh-Nagumo mathematical model of heart excitation is considered in the form of the initial boundary value problem for the evolution system of partial differential equations in a three-dimensional domain that corresponds to the actual geometry of the heart and its ventricles. A numerical analysis of excitation caused by a localized source is performed. The possibility of excitation from a source located in the cardiac muscle is discussed. The dependence of the velocity of excitation propagation and the width of its front on the model parameters is studied.





Section 1. Numerical methods and applications

Author Biography

I.A. Pavelchak


  1. FitzHugh R. Mathematical models of threshold phenomena in the nerve membrane // Bull. Math. Biophysics. 1955. 17, N 4. 257-278.
  2. FitzHugh R. Impulses and physiological states in theoretical models of nerve membrane // Biophysical J. 1961. 1, N 6. 445-466.
  3. Nagumo J., Arimoto S., Yoshizawa S. An active pulse transmission line simulating nerve axon // Proc. Inst. Radio Eng. 1962. 50, N 10. 2061-2070.
  4. Sundnes J., Lines G.T., Cai X., et al. Computing the electrical activity in the heart. Berlin: Springer, 2006.
  5. Hodgkin A.L., Huxley A.F., Katz B. Measurements of current-voltage relations in the membrane of the giant axon of Loligo // J. Physiol. 1952. 116, N 4. 424-448.
  6. Hodgkin A.L., Huxley A.F. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo // J. Physiol. 1952. 116, N 4. 449-472.
  7. Hodgkin A.L., Huxley A.F. The components of membrane conductance in the giant axon of Loligo // J. Physiol. 1952. 116, N 4. 473-496.
  8. Hodgkin A.L., Huxley A.F. The dual effect of membrane potential on sodium conductance in the giant axon of Loligo // J. Physiol. 1952. 116, N 4. 497-506.
  9. Hodgkin A.L., Huxley A.F. A quantitative description of membrane current and its application to conduction and excitation in nerve // J. Physiol. 1952. 117, N 4. 500-544.
  10. Noble D. A modification of the Hodgkin-Huxley equations applicable to Purkinje fibre action and pacemaker potentials // J. Physiol. 1962. 160, N 2. 317-352.
  11. Aliev R.R., Panfilov A.V. A simple two-variable model of cardiac excitation // Chaos, Solutions and Fractals. 1996. 7, N 3. 293-301.
  12. Mitchell C.C., Schaeffer D.G. A two-current model for the dynamics of cardiac membrane // Bull. Math. Biol. 2003. 65, N 5. 767-793.
  13. He Y., Keyes D.E. Reconstructing parameters of the FitzHugh-Nagumo system from boundary potential measurements // J. Comput. Neurosci. 2007. 23, N 2. 251-264.
  14. Moreau-Villéger V., Delingette H., Sermesant M., et al. Building maps of local apparent conductivity of the epicardium with a 2-D electrophysiological model of the heart // IEEE Trans. on Biomedical Engineering. 2006. 53, N 8. 1457-1466.
  15. Cox S., Wagner A. Lateral overdetermination of the FitzHugh-Nagumo system // Inverse Problems. 2004. 20, N 5. 1639-1647.
  16. Pavel’chak I.A., Tuikina S.R. Numerical solution method for the inverse problem of the modified FitzHugh-Nagumo model // Computational Mathematics and Modeling. 2012. 23, N 2. 208-215.
  17. Денисов А.М., Павельчак И.А. Численный метод определения локализованного начального возбуждения для некоторых математических моделей возбуждения сердца // Математическое моделирование. 2012. 24, № 7. 59-66.
  18. Павельчак И.А. Численный метод определения параметров в моделях Фитц-Хью-Нагумо и Алиева-Панфилова // Вычислительные методы и программирование. 2012. 13. 172-176.
  19. Relan J., Chinchapatnam P., Sermesant M., et al. Coupled personalization of cardiac electrophysiology models for prediction of ischaemic ventricular tachycardia // Interface Focus. 2011. 1, N 3. 396-407.
  20. Baillargeon B., Rebelo N., Fox D.D., et al. The Living Heart Project: a robust and integrative simulator for human heart function // European Journal of Mechanics - A/Solids. 2014 // (
  21. Berestycki H., Rodriguez N., Ryzhik L. Traveling wave solutions in a reaction-diffusion model for criminal activity // Multiscale Modeling &; Simulation. 2013. 11, N 4. 1097-1126.
  22. Rempe M.J., Best J., Terman D. A mathematical model of the sleep/wake cycle // Journal of Mathematical Biology. 2010. 60, N 5. 615-644.
  23. Dal H., Göktepe S., Kaliske M., Kuhl E. A fully implicit finite element method for bidomain models of cardiac electromechanics // Computer Methods in Applied Mechanics and Engineering. 2013. 253. 323-336.