A 3D Helmholtz iterative solver with a semi-analytical preconditioner for acoustic wavefield modeling in seismic exploration problems
Authors
-
D.A. Neklyudov
-
I.Yu. Silvestrov
-
V.A. Tcheverda
Keywords:
Helmholtz equation
iterative methods
preconditioners
acoustic waves
seismic exploration
Abstract
An approach to the iterative solution of the 3D acoustic wave equation in a frequency domain is proposed, substantiated, and verified numerically. Our method is based on Krylov-type linear solvers, similarly to several other iterative solver approaches. The distinctive feature of our method is the use of a right preconditioner obtained as the solution of the complex dumped Helmholtz equation in a 1D medium, where velocities vary only with depth. The actual Helmholtz operator is represented as a perturbation of the preconditioner. As a result, a matrix-by-vector multiplication of the preconditioned system can be efficiently evaluated via 2D FFT in x and y directions followed by the solution of a number of ordinary differential equations in z directions. While solving ODE’s. it is possible to treat the 1D velocity function as a piecewise constant one and to search for the exact solution as a superposition of upgoing and downgoing waves. This approach allows one not to use explicit finite-difference approximations of derivatives at all. The method has excellent dispersion properties in both lateral and vertical directions.
Section
Section 1. Numerical methods and applications
References
- Pratt R.G. Seismic waveform inversion in the frequency domain. Part 1: Theory and verification in a physical scale model // Geophysics. 1999. 64, N 3. 888-901.
- Mulder W.A., Plessix R.-E. Exploring some issues in acoustic full waveform inversion // Geophysical Prospecting. 2008. 56, N 6. 827-841.
- Virieux J., Operto S. An overview of full-waveform inversion in exploration geophysics // Geophysics. 2009. 74, N 6. WCC1-WCC26.
- Schenk O., Gärtner K. Solving unsymmetric sparse systems of linear equations with PARDISO // Future Gen. Comput. Syst. 2004. 20, N 3. 475-487.
- Operto S., Virieux J., Amestoy P., L’Excellent J.-Y., Giraud L., Ali H.B. H. 3D finite-difference frequency-domain modeling of visco-acoustic wave propagation using a massively parallel direct solver: A feasibility study // Geophysics. 2007. 72, N 5. SM195-SM211.
- Sourbier F., Operto S., Haidar A., Giraud L., Virieux J. Frequency-domain full-waveform modeling using a hybrid direct-iterative solver based on a parallel domain decomposition method: a tool for 3D full-waveform inversion? // SEG Tech. Program Expanded Abstr. 2008. 27, N 1. 2147-2151.
- Erlangga Y.A. Advances in iterative methods and preconditioners for the Helmholtz equation // Arch. Comput. Methods Eng. 2008. 15, N 1. 37-66.
- Wang S., de Hoop M.V., Xia J. On 3D modeling of seismic wave propagation via a structured parallel multifrontal direct Helmholtz solver // Geophysical Prospecting. 2011. 59, N 5. 857-873.
- Trefethen L., Bau D. Numerical linear algebra. Philadelphia: SIAM, 1997.
- Bayliss A., Goldstein C.I., Turkel E. An iterative method for the Helmholtz equation // Journal of Computational Physics. 1983. 49, N 3. 443-457.
- Erlangga Y.A., Vuik C., Oosterlee C.W. On a class of preconditioners for solving the Helmholtz equation // Applied Numerical Mathematics. 2004. 50, N 3-4. 409-425.
- Erlangga Y.A., Oosterlee C.W., Vuik C. A novel multigrid based preconditioner for heterogeneous Helmholtz problems // SIAM J. Sci. Comput. 2006. 27, N 4. 1471-1492.
- Riyanti C.D., Erlangga Y.A., Plessix R.-E., Mulder W.A., Vuik C., Oosterlee C. A new iterative solver for the time-harmonic wave equation // Geophysics. 2006. 71, N 5. E57-E63.
- Duff I., Gratton S., Pinel X., Vasseur X. Multigrid based preconditioners for the numerical solution of two-dimensional heterogeneous problems in geophysics // International Journal of Computer Mathematics. 2007. 84, N 8, 1167-1181.
- Kim S., Kim S. Multigrid simulation for high-frequency solutions of the Helmholtz problem in heterogeneous media // SIAM Journal on Scientific Computing. 2002. 24, N 2. 684-701.
- Plessix R.-E. A Helmholtz iterative solver for 3D seismic-imaging problems // Geophysics. 2007. 72, N 5. SM185-SM194.
- Plessix R.-E. Three-dimensional frequency-domain full-waveform inversion with an iterative solver // Geophysics. 2009. 74, N 6. WCC53-WCC61.
- Erlangga Y.A., Herrmann F.J. An iterative multilevel method for computing wavefields in frequency-domain seismic inversion // SEG Tech. Program Expanded Abstr. 2008. 27, N 1. 1956-1960.
- Engquist B., Ying L. Sweeping preconditioner for the Helmholtz equation: moving perfectly matched layers // Multiscale Model. Simul. 2011. 9, N 2. 686-710.
- Calandra H., Gratton S., Pinel X., Vasseur X. An improved two-grid preconditioner for the solution of three-dimensional Helmholtz problems in heterogeneous media // Numerical Linear Algebra with Applications. 2013. 20, N 4. 663-688.
- Abubakar A., Habashy T.M. Three-dimensional visco-acoustic modeling using a renormalized integral equation iterative solver // Journal of Computational Physics. 2013. 249. 1-12.
- Neklyudov D.A., Tcheverda V.A. A Helmholtz iterative solver without of finite-difference approximations // Proc. 72nd EAGE Conference and Exhibition. Extended Abstracts. Barcelona: Barcelona International Convention Centre, 2010. G006.
- Neklyudov D., Silvestrov I., Tcheverda V. Frequency domain iterative solver for elasticity with semi-analytical preconditioner // Proc. 81st SEG Annual Meeting, 2011, San-Antonio, USA. Expanded Abstracts. Vol. 30. Tulsa: Soc. Explor. Geophysicists, 2011. 2931-2935.
- Эйдус Д.М. О принципе предельного поглощения // Математический сборник. 1962. 57, № 1. 13-44.
- Вайнберг Б.Р. Принципы излучения, предельного поглощения и предельной амплитуды в общей теории уравнений с частными производными // Успехи матем. наук. 1966. 21, № 3. 115-194.
- Chen K. Matrix preconditioning techniques and applications. Cambridge: Cambridge University Press, 2005.
- Barrett R., Berry M.W., Chan T.F., Demmel J., Donato J., Dongarra J., Eijkhout V., Pozo R., Romine C., van der Vorst H. Templates for the solution of linear systems: building blocks for iterative methods. Philadelphia: SIAM, 1993.
- Sonneveld P., van Gijzen M.B. IDR(s): A family of simple and fast algorithms for solving large nonsymmetric systems of linear equations // SIAM J. Sci. Comput. 2008. 31, N 2. 1035-1062.
- Самарский А.А., Николаев Е.С. Методы решения сеточных уравнений. М.: Наука, 1979.
- Смагин С.И. Расчет функции Грина уравнения Гельмгольца с одномерным кусочно-постоянным волновым числом // Условно-корректные задачи математической физики в интерпретации геофизических наблюдений. Новосибирск: Изд-во ВЦ СО АН СССР, 1978. 105-127.
- Cheverda V.A., Clement F., Khaidukov V.G., Kostin V.I. Linearized inversion of data of multi-offset data for vertically-inhomogeneous background // Journal of Inverse and Ill-Posed problems. 1998. 6, N 5. 453-484.
- Neklyudov D., Dmitriev M., Belonosov M., Tcheverda V. Frequency-domain iterative solver for 3D acoustic wave equation with two-stage semi-analytical preconditioner // 76-th EAGE Conference and Exhibition, Amsterdam, The Netherlands, 2014. Extended Abstracts. Amsterdam, 2014. Tu G105 09.
- Thompson M., Arntsen B., Amundsen L. Acquisition geometry versus 4C image quality: A study from Gullfaks South // 73rd SEG Annual International Meeting, 2003. Expanded Abstracts. Vol. 22. Tulsa: Soc. Explor. Geophysicists, 2003. 793-796.
- Владимиров В.С. Уравнения математической физики. М: Наука, 1970.