A 3D Helmholtz iterative solver with a semi-analytical preconditioner for acoustic wavefield modeling in seismic exploration problems

Authors

  • D.A. Neklyudov
  • I.Yu. Silvestrov
  • V.A. Tcheverda

Keywords:

Helmholtz equation
iterative methods
preconditioners
acoustic waves
seismic exploration

Abstract

An approach to the iterative solution of the 3D acoustic wave equation in a frequency domain is proposed, substantiated, and verified numerically. Our method is based on Krylov-type linear solvers, similarly to several other iterative solver approaches. The distinctive feature of our method is the use of a right preconditioner obtained as the solution of the complex dumped Helmholtz equation in a 1D medium, where velocities vary only with depth. The actual Helmholtz operator is represented as a perturbation of the preconditioner. As a result, a matrix-by-vector multiplication of the preconditioned system can be efficiently evaluated via 2D FFT in x and y directions followed by the solution of a number of ordinary differential equations in z directions. While solving ODE’s. it is possible to treat the 1D velocity function as a piecewise constant one and to search for the exact solution as a superposition of upgoing and downgoing waves. This approach allows one not to use explicit finite-difference approximations of derivatives at all. The method has excellent dispersion properties in both lateral and vertical directions.


Published

2014-09-08

Issue

Section

Section 1. Numerical methods and applications

Author Biographies

D.A. Neklyudov

I.Yu. Silvestrov

V.A. Tcheverda


References

  1. Pratt R.G. Seismic waveform inversion in the frequency domain. Part 1: Theory and verification in a physical scale model // Geophysics. 1999. 64, N 3. 888-901.
  2. Mulder W.A., Plessix R.-E. Exploring some issues in acoustic full waveform inversion // Geophysical Prospecting. 2008. 56, N 6. 827-841.
  3. Virieux J., Operto S. An overview of full-waveform inversion in exploration geophysics // Geophysics. 2009. 74, N 6. WCC1-WCC26.
  4. Schenk O., Gärtner K. Solving unsymmetric sparse systems of linear equations with PARDISO // Future Gen. Comput. Syst. 2004. 20, N 3. 475-487.
  5. Operto S., Virieux J., Amestoy P., L’Excellent J.-Y., Giraud L., Ali H.B. H. 3D finite-difference frequency-domain modeling of visco-acoustic wave propagation using a massively parallel direct solver: A feasibility study // Geophysics. 2007. 72, N 5. SM195-SM211.
  6. Sourbier F., Operto S., Haidar A., Giraud L., Virieux J. Frequency-domain full-waveform modeling using a hybrid direct-iterative solver based on a parallel domain decomposition method: a tool for 3D full-waveform inversion? // SEG Tech. Program Expanded Abstr. 2008. 27, N 1. 2147-2151.
  7. Erlangga Y.A. Advances in iterative methods and preconditioners for the Helmholtz equation // Arch. Comput. Methods Eng. 2008. 15, N 1. 37-66.
  8. Wang S., de Hoop M.V., Xia J. On 3D modeling of seismic wave propagation via a structured parallel multifrontal direct Helmholtz solver // Geophysical Prospecting. 2011. 59, N 5. 857-873.
  9. Trefethen L., Bau D. Numerical linear algebra. Philadelphia: SIAM, 1997.
  10. Bayliss A., Goldstein C.I., Turkel E. An iterative method for the Helmholtz equation // Journal of Computational Physics. 1983. 49, N 3. 443-457.
  11. Erlangga Y.A., Vuik C., Oosterlee C.W. On a class of preconditioners for solving the Helmholtz equation // Applied Numerical Mathematics. 2004. 50, N 3-4. 409-425.
  12. Erlangga Y.A., Oosterlee C.W., Vuik C. A novel multigrid based preconditioner for heterogeneous Helmholtz problems // SIAM J. Sci. Comput. 2006. 27, N 4. 1471-1492.
  13. Riyanti C.D., Erlangga Y.A., Plessix R.-E., Mulder W.A., Vuik C., Oosterlee C. A new iterative solver for the time-harmonic wave equation // Geophysics. 2006. 71, N 5. E57-E63.
  14. Duff I., Gratton S., Pinel X., Vasseur X. Multigrid based preconditioners for the numerical solution of two-dimensional heterogeneous problems in geophysics // International Journal of Computer Mathematics. 2007. 84, N 8, 1167-1181.
  15. Kim S., Kim S. Multigrid simulation for high-frequency solutions of the Helmholtz problem in heterogeneous media // SIAM Journal on Scientific Computing. 2002. 24, N 2. 684-701.
  16. Plessix R.-E. A Helmholtz iterative solver for 3D seismic-imaging problems // Geophysics. 2007. 72, N 5. SM185-SM194.
  17. Plessix R.-E. Three-dimensional frequency-domain full-waveform inversion with an iterative solver // Geophysics. 2009. 74, N 6. WCC53-WCC61.
  18. Erlangga Y.A., Herrmann F.J. An iterative multilevel method for computing wavefields in frequency-domain seismic inversion // SEG Tech. Program Expanded Abstr. 2008. 27, N 1. 1956-1960.
  19. Engquist B., Ying L. Sweeping preconditioner for the Helmholtz equation: moving perfectly matched layers // Multiscale Model. Simul. 2011. 9, N 2. 686-710.
  20. Calandra H., Gratton S., Pinel X., Vasseur X. An improved two-grid preconditioner for the solution of three-dimensional Helmholtz problems in heterogeneous media // Numerical Linear Algebra with Applications. 2013. 20, N 4. 663-688.
  21. Abubakar A., Habashy T.M. Three-dimensional visco-acoustic modeling using a renormalized integral equation iterative solver // Journal of Computational Physics. 2013. 249. 1-12.
  22. Neklyudov D.A., Tcheverda V.A. A Helmholtz iterative solver without of finite-difference approximations // Proc. 72nd EAGE Conference and Exhibition. Extended Abstracts. Barcelona: Barcelona International Convention Centre, 2010. G006.
  23. Neklyudov D., Silvestrov I., Tcheverda V. Frequency domain iterative solver for elasticity with semi-analytical preconditioner // Proc. 81st SEG Annual Meeting, 2011, San-Antonio, USA. Expanded Abstracts. Vol. 30. Tulsa: Soc. Explor. Geophysicists, 2011. 2931-2935.
  24. Эйдус Д.М. О принципе предельного поглощения // Математический сборник. 1962. 57, № 1. 13-44.
  25. Вайнберг Б.Р. Принципы излучения, предельного поглощения и предельной амплитуды в общей теории уравнений с частными производными // Успехи матем. наук. 1966. 21, № 3. 115-194.
  26. Chen K. Matrix preconditioning techniques and applications. Cambridge: Cambridge University Press, 2005.
  27. Barrett R., Berry M.W., Chan T.F., Demmel J., Donato J., Dongarra J., Eijkhout V., Pozo R., Romine C., van der Vorst H. Templates for the solution of linear systems: building blocks for iterative methods. Philadelphia: SIAM, 1993.
  28. Sonneveld P., van Gijzen M.B. IDR(s): A family of simple and fast algorithms for solving large nonsymmetric systems of linear equations // SIAM J. Sci. Comput. 2008. 31, N 2. 1035-1062.
  29. Самарский А.А., Николаев Е.С. Методы решения сеточных уравнений. М.: Наука, 1979.
  30. Смагин С.И. Расчет функции Грина уравнения Гельмгольца с одномерным кусочно-постоянным волновым числом // Условно-корректные задачи математической физики в интерпретации геофизических наблюдений. Новосибирск: Изд-во ВЦ СО АН СССР, 1978. 105-127.
  31. Cheverda V.A., Clement F., Khaidukov V.G., Kostin V.I. Linearized inversion of data of multi-offset data for vertically-inhomogeneous background // Journal of Inverse and Ill-Posed problems. 1998. 6, N 5. 453-484.
  32. Neklyudov D., Dmitriev M., Belonosov M., Tcheverda V. Frequency-domain iterative solver for 3D acoustic wave equation with two-stage semi-analytical preconditioner // 76-th EAGE Conference and Exhibition, Amsterdam, The Netherlands, 2014. Extended Abstracts. Amsterdam, 2014. Tu G105 09.
  33. Thompson M., Arntsen B., Amundsen L. Acquisition geometry versus 4C image quality: A study from Gullfaks South // 73rd SEG Annual International Meeting, 2003. Expanded Abstracts. Vol. 22. Tulsa: Soc. Explor. Geophysicists, 2003. 793-796.
  34. Владимиров В.С. Уравнения математической физики. М: Наука, 1970.