A parallel-processing-oriented method for the representation of multi-digit floating-point numbers

Authors

  • K.S. Isupov
  • A.N. Maltsev

Keywords:

residue number system
high-precision computations
modular-position floating-point format
multi-digit numbers
arithmetic operations
high performance

Abstract

The extended precision of calculations is required in solving many scientific and engineering problems. The solution time is a critical parameter to accomplish and, therefore, new methods should be developed for fast high-precision arithmetic. In this paper a new modular-positional format for the representation of floating-point multi-digit numbers is proposed. The main concept of this format is to represent and ensure the digit-parallel processing of floating-point mantissas in residue number systems. The method of interval-positional characteristics is used to increase the speed of complex non-modular operations. Several algorithms for performing arithmetic operations and rounding in the new modular-positional floating-point format are considered. The results of studies of their vectorization efficiency and performance compared to some analogs (MPFR mdash; Multiple Precision Floating-Point Reliable library, NTL mdash; Number Theory Library, and Wolfram Mathematica) are discussed.


Published

2014-11-13

Issue

Section

Section 1. Numerical methods and applications

Author Biographies

K.S. Isupov

A.N. Maltsev


References

  1. Bailey D.H., Borwein J.M. High-precision arithmetic: progress and challenges. [Electronic resource]: 2013. URL: http://www.davidhbailey.com/dhbpapers/hp-arith.pdf (date of access 19.06.2014).
  2. Ghazi K.R., Lefévre V., Thevény P., Zimmermann P. Why and how to use arbitrary precision // Computing in Science &; Engineering. 2010. 12, N 3. 62-65.
  3. Bailey D.H., Borwein J.M. Experimental mathematics: examples, methods and implications // Notices of the AMS. 2005. 52, N 5. 502-514.
  4. Bailey D.H., Borwein J.M., Barrio R. High-precision computation: mathematical physics and dynamics // Applied Mathematics and Computation. 2012. 218, N 20. 10106-10121.
  5. Muller J.-M. et al. Handbook of floating-point arithmetic. Boston: Birkhäuser, 2010.
  6. Акушский И.Я., Юдицкий Д.И. Машинная арифметика в остаточных классах. М.: Сов. Радио, 1968.
  7. Omondi A., Premkumar B. Residue number systems: theory and implementation. London: Imperial College Press, 2007.
  8. Исупов К.С. Методика выполнения базовых немодульных операций в модулярной арифметике с применением интервальных позиционных характеристик // Известия высших учебных заведений. Поволжский регион. Технические науки. 2013. 27, № 3. 26-39.
  9. Исупов К.С. Об одном алгоритме сравнения чисел в системе остаточных классов // Вестн. Астрахан. гос. техн. ун-та. Сер.: Управление, вычисл. техн. информ. 2014. № 3. 40-49.
  10. Оцоков Ш.А. Структурно-алгоритмические методы организации высокоточных вычислений на основе теоретических обобщений в модулярной системе счисления. Дис.. докт. техн. наук. М., 2010.
  11. Sasaki A. The basis for implementation of additive operations in the residue number system // IEEE Transactions on Computers. 1968. T. C-17, N 11. 1066-1073.
  12. Поснов Н.Н., Буза М.К., Кравцов В.К. О плавающей запятой в системе счисления в остаточных классах // Вестник Белорусского гос. ун-та. 1969. Серия 1. № 3. 21-27.
  13. Kinoshita E., Kosako H., Kojima Y. Floating-point arithmetic algorithms in the symmetric residue number system // IEEE Transactions on Computers. 1974. T. С-23, N 1. 9-20.
  14. Chiang J.-S., Lu M. Floating-point numbers in residue number systems // Computers and Mathematics with Applications. 1991. 22, N 10. 127-140.
  15. Kinoshita E., Lee K.-J. A residue arithmetic extension for reliable scientific computation // IEEE Transactions on Computers. 1997. 46, N 2. 129-138.
  16. Gbolagade K.A., Cotofana S.D. An O(n) residue number system to mixed radix conversion technique // IEEE International Symposium on Circuits and Systems (24-27 May, 2009). New York : IEEE Press, 2009. 521-524.
  17. Исупов К.С. Алгоритм вычисления интервально-позиционной характеристики для выполнения немодульных операций в системах остаточных классов // Вестник ЮУрГУ. Серия: Компьютерные технологии, управление, радиоэлектроника. 2014. 14, № 1. 89-97.
  18. Исупов К.С., Мальцев А.Н. Модулярное масштабирование степенью двойки с произвольным шагом [Электронный ресурс] // Общество, наука, инновации (НПК-2014): Сб. материалов ежегодной Всероссийской научно-практической конф. (15-26 апреля 2014 г., г. Киров). Киров: Изд-во ВятГУ, 2014. 1179-1184.
  19. Hung C.Y., Parhami B. An approximate sign detection method for residue numbers and its application to RNS division // Computers and Mathematics with Applications. 1994. 27, N 4. 23-35.
  20. Kaltofen E., Hitz M. Integer division in residue number systems // IEEE Transactions on Computers. 1995. 44, N 8. 983-989.
  21. Lu M., Chiang J.-S. A novel division algorithm for the residue number system // IEEE Transactions on Computers. 1992. 41, N 8. 1026-1032.
  22. Chang C.-C., Yang J.-H. A division algorithm using bisection method in residue number system // International Journal of Computer, Consumer and Control. 2013. 2, N 1. 59-66.
  23. Fousse L., Hanrot G., Lefévre V., Pélissier P., Zimmermann P. MPFR: a multiple-precision binary floating-point library with correct rounding // ACM Transactions on Mathematical Software. 2007. 33, N 2. Article No. 13.