Mathematical modeling of multicomponent gas flows with energy intensive chemical processes by the example of ethane pyrolysis

Authors

  • O.A. Stadnichenko
  • V.N. Snytnikov
  • Vl.N. Snytnikov

Keywords:

three-dimensional gas dynamics with chemical reactions
ethane pyrolysis
gas flow dynamics
Navier-Stokes equations

Abstract

A mathematical model describing the three-dimensional gas flow dynamics in a laboratory reactor with diffusion, heat transfer and chemical reactions of the hydrocarbons pyrolysis with their thermal effects and thermal processes is proposed. The corresponding numerical model is based on the ANSYS Fluent software package with the addition of a stiff system of ordinary differential equations describing the kinetic scheme of radical chain reactions and heat transfer processes. The mutual verification of experimental data and numerical results shows the proposed model efficiency. This model is designed for multiparameter calculations for the design of chemical-engineering units with large-scale transition and search for the optimal geometry and physical parameters in the case of continued laminar gas flows. The model is verified by the example of thermal and energy regimes for the tube ethane pyrolysis reactor.


Published

2014-12-18

Issue

Section

Section 1. Numerical methods and applications

Author Biographies

O.A. Stadnichenko

V.N. Snytnikov

Vl.N. Snytnikov


References

  1. http://www.cfd-online.com/Wiki/Codes
  2. http://www.ansys.com/Products/Simulation+Technology/Fluid+Dynamics/Fluid+Dynamics+Products/ANSYS+linebreak Fluent
  3. Snytnikov V.N., Mischenko T.I., Snytnikov Vl.N., Chernykh I.G. A reactor for the study of homogeneous processes using laser radiation energy // Chemical Engineering Journal. 2009. 150, N 1. 231-236.
  4. Snytnikov V.N., Mishchenko T.I., Snytnikov Vl.N., Stoyanovskaya O.P., Parmon V.N. Autocatalytic gas-phase ethane dehydrogenation in a wall-less reactor // Kinetics and Catalysis. 2010. 51, N 1. 10-17.
  5. Snytnikov V.N., Mishchenko T.I., Snytnikov Vl.N., Malykhin S.E., Avdeev V.I., Parmon V.N. Autocatalytic gas-phase dehydrogenation of ethane // Res. Chem. Intermed. 2012. 38, N 3-5. 1133-1147.
  6. Maitland G.C., Rigby M., Smith E.B., Wakeham W.A. Intermolecular forces: their origin and determination. Oxford: Clarendon Press, 1987.
  7. Poling B.E., Prausnitz J.M., O’Connell J.P. The properties of gases and liquids. New York: McGraw-Hill, 2001.
  8. Taylor R., Krishna R. Multicomponent mass transfer. New York: Wiley, 1993.
  9. Cussler E.L. Diffusion: mass transfer in fluid systems. New York: Cambridge University Press, 1997.
  10. Nwobi O.C., Long L.N., Micci M.M. Molecular dynamics studies of thermophysical properties of supercritical ethylene // Journal of Thermophysics and Heat Transfer. 1999. 13, N 3. 351-354.
  11. Fischer J., Lustig R., Breitenfelder-Manske H., Lemming W. Influence of intermolecular potential parameters on orthobaric properties of fluids consisting of spherical and linear molecules // Molec. Phys. 1984. 52, N 2. 485-497.
  12. Zhang Z., Duan Z. Phase equilibria of the system methane-ethane from temperature scaling Gibbs ensemble Monte Carlo simulation // Geochim. Cosmochim. Acta. 2002. 66, N 19, 3431-3439.
  13. http://combustion.berkeley.edu/soot/ mechanisms/abf+files/abf+transport.dat
  14. Jasper A.W., Miller J.A. Lennard-Jones parameters for combustion and chemical kinetics modeling from full-dimensional intermolecular potentials // Combust. Flame. 2014. 161, N 1. 101-110.
  15. Nurislamova L.F., Stoyanovskaya O.P., Stadnichenko O.A., et al. Few-step kinetic model of gaseous autocatalytic ethane pyrolysis and its evaluation by means of uncertainty and sensitivity analysis // Chem. Prod. Process Model. 2014. 9.
    doi 10.1515/cppm-2014-0008
  16. Засыпкина О.А., Стояновская О.П., Черных И.Г. Разработка и применение программных средств для оптимизации построения моделей реагирующих сред // Вычислительные методы и программирование. 2008. 9. 19-25.
  17. Chernykh I., Stoyanovskaya O., Zasypkina O. ChemPAK software package as an environment for kinetics scheme evaluation // Chemical Product and Process Modeling. 2008. 4, N 4.
    doi 10.2202/1934-2659.1288
  18. Кирьянов Д.В., Кирьянова Е.Н. Вычислительная физика. М.: Полибук Мультимедиа, 2006.
  19. Мухина Т.Н., Барабанов Н.Л., Бабаш С.Е. и др. Пиролиз углеводородного сырья. М.: Химия, 1987.
  20. Физические величины / Под ред. Григорьева И.С., Мейлихова Е.З. М.: Энергоатомиздат, 1991.
  21. Таблица физических величин / Под ред. Кикоина И.К. М.: Атомиздат, 1976.