Reduction of detailed schemes for chemical transformations of formaldehyde and hydrogen oxidation reactions based on a sensitivity analysis of a mathematical model

Authors

Keywords:

sensitivity analysis, mathematical model of reaction, formaldehyde oxidation reaction, hydrogen oxidation reaction, reduction of chemical reaction mechanisms

Abstract

Computer simulation plays an important role in the understanding of complex chemical reactions. The quality of simulation depends on the choice of chemical reaction schemes. Detailed kinetic schemes include tens of substances and hundreds of stages and are important for a complete and accurate description of processes in a wide range of temperatures and conditions. However, the use of such kinetic schemes requires significant computational cost. The reaction kinetics can be described using a much smaller number of stages without worsening the quality of simulation in a desired range of reaction conditions. In this paper an approach to simplify a mathematical model of chemical reactions by reducing the number of stages and substances is proposed on the basis of a sensitivity analysis of an objective function to changes in model parameters. The results of simulation are compared in the case of using a number of reduced and detailed schemes for formaldehyde and hydrogen oxidation reactions.

Author Biographies

L.F. Nurislamova

I.M. Gubaydullin

References

  1. Слинько М.Г. Основы и принципы математического моделирования каталитических процессов. Новосибирск: Наука, 2004.
  2. Кондратьев В.Н., Никитин Е.Е. Кинетика и механизм газофазных реакций. М.: Наука, 1974.
  3. Варнатц Ю., Маас У., Диббл Р. Горение. Физические и химические аспекты, моделирование, эксперименты, образование загрязняющих веществ. М.: Физматлит, 2006.
  4. Tomlin A.S., Pilling M.J., Turányi T., Merkin J.H., Brindley J. Mechanism reduction for the oscillatory oxidation of hydrogen: sensitivity and quasi-steady-state analyses // Combustion and Flame. 1992. 91, N 2. 107-130.
  5. Lindstedt R.P., Maurice L.Q. Detailed chemical kinetic model for aviation fuels // Journal of Propulsion and Power. 2000. 16, N 2. 187-195.
  6. Применение вычислительной математики в химической и физической кинетике / Под ред. Л.С. Полак. М.: Наука, 1969.
  7. Pepiot P., Pitsch H. Systematic reduction of large chemical mechanisms // Proc. 4th Joint Meeting of the U.S. Sections of the Combustion Institute. Philadelphia: Drexel Univ., 2005.
  8. Brown N.J., Li G., Koszykowski M.L. Mechanism reduction via principal component analysis // Int. J. Chem. Kinet. 1997. 29, N 6. 393-414.
  9. Shi Y., Ge H.-W., Brakora J.L., Reitz R.D. Automatic chemistry mechanism reduction of hydrocarbon fuels for HCCI engines based on DRGEP and PCA methods with error control // Energy &; Fuels. 2010. 24, N 3. 1646-1654.
  10. Turányi T. Sensitivity analysis of complex kinetic systems. Tools and applications // Journal of Mathematical Chemistry. 1990. 5, N 3. 203-248.
  11. Saltelli A., Ratto M., Tarantola S., Campolongo F. Sensitivity Analysis for Chemical Models // Chem. Rev. 2005. 105, N 7. 2811-2828.
  12. Xia A.G., Michelangeli D.V., Makar P.A. Mechanism reduction for the formation of secondary organic aerosol for integration into a 3-dimensional regional air quality model: alpha-pinene oxidation system // Atmos. Chem. Phys. 2009. 9. 4341-4362.
  13. Boivin P., Jiménez C., Sánchez A.L., Williams F.A. An explicit reduced mechanism for m H_2-air combustion // Proceedings of the Combustion Institute. 2011. 33, N 1. 517-523.
  14. Соболь И.М. Об оценке чувствительности нелинейных математических моделей // Математическое моделирование. 1990. 2, вып. 1. 112-118.
  15. Прямые и обратные задачи в химической кинетике / Под ред. В.И. Быкова. Новосибирск: Наука, 1993.
  16. Димитров В.И. Простая кинетика. Новосибирск: Наука, 1982.
  17. NIST Chemistry WebBook (http://webbook.nist.gov/chemistry/).
  18. Маничев В.Б., Жук Д.М., Сахаров М.К. SADEL - Си-библиотека для решения алгебраических и дифференциальных уравнений с максимально возможной компьютерной точностью // Информационные технологии. 2012. № 10. 7-13.
  19. The Kintecus simulation software (http://www.kintecus.com/).
  20. Connaire M.’O., Curran H.J., Simmie J.M., Pitz W.J., Westbrook C.K. A comprehensive modeling study of hydrogen oxidation // Int. J. Chem. Kinet. 2004. 36, N 11. 603-622.
  21. Nurislamova L.F., Stoyanovskaya O.P., Stadnichenko O.A., Gubaidullin I.M., Snytnikov V.N., Novichkova A.V. Few-step kinetic model of gaseous autocatalytic ethane pyrolysis and its evaluation by means of uncertainty and sensitivity analysis // Chemical Product and Process Modeling. 2014. 9, N 2. 143-154 (doi 10.1515/cppm-2014-0008).
  22. Saltelli A., Ratto M., Tarantola S., Campolongo F. Sensitivity analysis practices: strategies for model-based inference // Reliab. Eng. Syst. Safety. 2006. 91, N 10-11. 1109-1125.
  23. Tomlin A.S., Ziehn T. The use of global sensitivity methods for the analysis, evaluation and improvement of complex modelling systems // Lecture Notes in Computational Science and Engineering. Vol. 75. Heidelberg: Springer, 2011. 9-36.
  24. Свидетельство о государственной регистрации программы для ЭВМ № 2014617100. Глобальный анализ чувствительности и неопределенности кинетической системы / Байназарова Н.М., Нурисламова Л.Ф., Губайдуллин И.М. Зарегистрировано в Реестре программ для ЭВМ 11 июля 2014 г., г. Москва.
  25. Соболь И.М. Равномерно распределенные последовательности с дополнительным свойством равномерности // Ж. вычисл. матем. и матем. физ. 1976. 16, № 5. 1332-1337.
  26. Hidaka Y., Taniguchi T., Tanaka H., et al. Shock-tube study of CH_2O pyrolysis and oxidation // Combustion and Flame. 1993. 92, N 4. 365-376.

Published

2014-12-16

How to Cite

Нурисламова Л.Ф., Губайдуллин И.М. Reduction of Detailed Schemes for Chemical Transformations of Formaldehyde and Hydrogen Oxidation Reactions Based on a Sensitivity Analysis of a Mathematical Model // Numerical methods and programming. 2014. 15. 685-696

Issue

Section

Section 1. Numerical methods and applications