Application of predictor-corrector finite-difference-based schemes in the lattice Boltzmann method
Authors
-
G.V. Krivovichev
-
E.V. Voskoboinikova
Keywords:
lattice Boltzmann method
kinetic equations
predictor-corrector
cavity flow problem
Taylor vortices
Abstract
Predictor-corrector finite-difference-based lattice Boltzmann schemes are proposed. An approach with separate approximation of spatial derivatives in the convective terms of kinetic equations and an approach when these terms are replaced by a single finite difference are considered. Explicit finite-difference schemes are used at both the stages of the computation process. The cavity flow problem and the Taylor vortex problem are solved numerically in a wide range of the Reynolds number. It is shown that the proposed schemes allow a larger time step compared to other known schemes.
Section
Section 1. Numerical methods and applications
References
- S. Chen and G. D. Doolen, “Lattice Boltzmann Method for Fluid Flows,” Annu. Rev. Fluid Mech. 30, 329-364 (1998).
- D. A. Wolf-Gladrow, Lattice-Gas Cellular Automata and Lattice Boltzmann Models: An Introduction (Springer, Berlin, 2005).
- N. E. Grachev, A. V. Dmitriev, and D. S. Senin, “Simulation of Gas Dynamics with the Lattice Boltzmann Method,” Vychisl. Metody Programm. 12, 227-231 (2011).
- N. M. Evstigneev and N. A. Magnitskii, “Nonlinear Dynamics in the Initial-Boundary Value Problem on the Fluid Flow from a Ledge for the Hydrodynamic Approximation to the Boltzmann Equations,” Differ. Uravn. 46 (12), 1794-1798 (2010) [Differ. Equ. 46 (12), 1794-1798 (2010)].
- G. V. Krivovichev, “On the Computation of Viscous Fluid Flows by the Lattice Boltzmann Method,” Kompyut. Issled. Model. 5 (2), 165-178 (2013).
- G. V. Krivovichev, “Modification of the Lattice Boltzmann Method for the Computations of Viscid Incompressible Fluid Flows,” Kompyut. Issled. Model. 6 (3), 365-381 (2014).
- R. R. Nourgaliev, T. N. Dinh, T. G. Theofanous, and D. Joseph, “The Lattice Boltzmann Equation Method: Theoretical Interpretation, Numerics and Implications,” Int. J. Multiphase Flow 29 (1), 117-169 (2003).
- A. L. Kupershtokh, “Three-Dimensional Simulations of Two-Phase Liquid-Vapor Systems on GPU Using the Lattice Boltzmann Method,” Vychisl. Metody Programm. 13, 130-138 (2012).
- A. L. Kupershtokh, “Three-Dimensional LBE Simulations on Hybrid GPU-Clusters for the Decay of a Binary Mixture of Liquid Dielectrics with a Solute Gas to a System of Gas-Vapor Channels,” Vychisl. Metody Programm. 13, 384-390 (2012).
- A. L. Kupershtokh, D. A. Medvedev, and I. I. Gribanov, “Modeling of Thermal Flows in a Medium with Phase Transitions Using the Lattice Boltzmann Method,” Vychisl. Metody Programm. 15 (2), 317-328 (2014).
- C. Pan, L.-S. Luo, and C. T. Miller, “An Evaluation of Lattice Boltzmann Schemes for Porous Medium Flow Simulation,” Comput. Fluids 35 (8/9), 898-909 (2006).
- Z. Zhao, P. Huang, Y. Li, and J. Li, “A Lattice Boltzmann Method for Viscous Free Surface Waves in Two Dimensions,” Int. J. Numer. Meth. Fluids 71 (2), 223-248 (2013).
- C. Feichtinger, J. Habich, H. Köstler, et al., “A Flexible Patch-Based Lattice Boltzmann Parallelization Approach for Heterogeneous GPU-CPU Clusters,” Parallel Comput. 37 (9), 536-549 (2011).
- M. Hasert, K. Masilamani, S. Zimny, et al., “Complex Fluid Simulations with the Parallel Tree-Based Lattice Boltzmann Solver Musubi ,” J. Comput. Sci. 5 (5), 784-794 (2014).
- D. A. Bikulov, D. S. Senin, D. S. Demin, et al., “Implementation of the Lattice Boltzmann Method on GPU Clusters,” Vychisl. Metody Programm. 13, 13-19 (2012).
- D. A. Bikulov and D. S. Senin, “Implementation of the Lattice Boltzmann Method without Stored Distribution Functions on GPU,” Vychisl. Metody Programm. 14, 370-374 (2013).
- A. Banari, C. Jansen, S. T. Grilli, and M. Krafczyk, “Efficient GPGPU Implementation of a Lattice Boltzmann Model for Multiphase Flows with High Density Ratios,” Comput. Fluids 93, 1-17 (2014).
- T. Seta and R. Takahashi, “Numerical Stability Analysis of FDLBM,” J. Stat. Phys. 107 (1/2), 557-572 (2002).
- V. Sofonea and R. F. Sekerka, “Viscosity of Finite Difference Lattice Boltzmann Models,” J. Comput. Phys. 184 (2), 422-434 (2003).
- M. Tsutahara, “The Finite-Difference Lattice Boltzmann Method and Its Application in Computational Aeroacoustics,” Fluid Dyn. Res. 44 (4), 045507-045525 (2012).
- G. V. Krivovichev, “Investigation of the Stability of Explicit Finite Difference-Based Lattice Boltzmann Schemes,” Vychisl. Metody Programm. 13, 332-340 (2012).
- G. V. Krivovichev, “Stability of Finite-Difference-Based Lattice Boltzmann Schemes,” Vychisl. Metody Programm. 14, 1-8 (2013).
- G. V. Krivovichev and S. A. Mikheev, “Stability of Three-Layer Finite Difference-Based Lattice Boltzmann Schemes,” Vychisl. Metody Programm. 15 (2), 211-221 (2014).
- P. L. Bhatnagar, E. P. Gross, and M. Krook, “A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems,” Phys. Rev. 94 (3), 511-525 (1954).
- Q. Zou and X. He, “On Pressure and Velocity Boundary Conditions for the Lattice Boltzmann BGK Model,” Phys. Fluids 9 (6), 1591-1598 (1997).
- U. Ghia, K. N. Ghia, and C. T. Shin, “High-Re Solutions for Incompressible Flow Using the Navier-Stokes Equations and a Multigrid Method,” J. Comput. Phys. 48 (3), 387-411 (1982).
- G. J. Taylor, “On the Decay of Vortices in a Viscous Fluid,” Phil. Mag. 46, 671-674 (1923).