DOI: https://doi.org/10.26089/NumMet.v16r102

Application of predictor-corrector finite-difference-based schemes in the lattice Boltzmann method

Authors

  • G.V. Krivovichev
  • E.V. Voskoboinikova

Keywords:

lattice Boltzmann method
kinetic equations
predictor-corrector
cavity flow problem
Taylor vortices

Abstract

Predictor-corrector finite-difference-based lattice Boltzmann schemes are proposed. An approach with separate approximation of spatial derivatives in the convective terms of kinetic equations and an approach when these terms are replaced by a single finite difference are considered. Explicit finite-difference schemes are used at both the stages of the computation process. The cavity flow problem and the Taylor vortex problem are solved numerically in a wide range of the Reynolds number. It is shown that the proposed schemes allow a larger time step compared to other known schemes.


Published

2015-01-19

Issue

Section

Section 1. Numerical methods and applications

Author Biographies

G.V. Krivovichev

St Petersburg University
• Associate Professor

E.V. Voskoboinikova


References

  1. S. Chen and G. D. Doolen, “Lattice Boltzmann Method for Fluid Flows,” Annu. Rev. Fluid Mech. 30, 329-364 (1998).
  2. D. A. Wolf-Gladrow, Lattice-Gas Cellular Automata and Lattice Boltzmann Models: An Introduction (Springer, Berlin, 2005).
  3. N. E. Grachev, A. V. Dmitriev, and D. S. Senin, “Simulation of Gas Dynamics with the Lattice Boltzmann Method,” Vychisl. Metody Programm. 12, 227-231 (2011).
  4. N. M. Evstigneev and N. A. Magnitskii, “Nonlinear Dynamics in the Initial-Boundary Value Problem on the Fluid Flow from a Ledge for the Hydrodynamic Approximation to the Boltzmann Equations,” Differ. Uravn. 46 (12), 1794-1798 (2010) [Differ. Equ. 46 (12), 1794-1798 (2010)].
  5. G. V. Krivovichev, “On the Computation of Viscous Fluid Flows by the Lattice Boltzmann Method,” Kompyut. Issled. Model. 5 (2), 165-178 (2013).
  6. G. V. Krivovichev, “Modification of the Lattice Boltzmann Method for the Computations of Viscid Incompressible Fluid Flows,” Kompyut. Issled. Model. 6 (3), 365-381 (2014).
  7. R. R. Nourgaliev, T. N. Dinh, T. G. Theofanous, and D. Joseph, “The Lattice Boltzmann Equation Method: Theoretical Interpretation, Numerics and Implications,” Int. J. Multiphase Flow 29 (1), 117-169 (2003).
  8. A. L. Kupershtokh, “Three-Dimensional Simulations of Two-Phase Liquid-Vapor Systems on GPU Using the Lattice Boltzmann Method,” Vychisl. Metody Programm. 13, 130-138 (2012).
  9. A. L. Kupershtokh, “Three-Dimensional LBE Simulations on Hybrid GPU-Clusters for the Decay of a Binary Mixture of Liquid Dielectrics with a Solute Gas to a System of Gas-Vapor Channels,” Vychisl. Metody Programm. 13, 384-390 (2012).
  10. A. L. Kupershtokh, D. A. Medvedev, and I. I. Gribanov, “Modeling of Thermal Flows in a Medium with Phase Transitions Using the Lattice Boltzmann Method,” Vychisl. Metody Programm. 15 (2), 317-328 (2014).
  11. C. Pan, L.-S. Luo, and C. T. Miller, “An Evaluation of Lattice Boltzmann Schemes for Porous Medium Flow Simulation,” Comput. Fluids 35 (8/9), 898-909 (2006).
  12. Z. Zhao, P. Huang, Y. Li, and J. Li, “A Lattice Boltzmann Method for Viscous Free Surface Waves in Two Dimensions,” Int. J. Numer. Meth. Fluids 71 (2), 223-248 (2013).
  13. C. Feichtinger, J. Habich, H. Köstler, et al., “A Flexible Patch-Based Lattice Boltzmann Parallelization Approach for Heterogeneous GPU-CPU Clusters,” Parallel Comput. 37 (9), 536-549 (2011).
  14. M. Hasert, K. Masilamani, S. Zimny, et al., “Complex Fluid Simulations with the Parallel Tree-Based Lattice Boltzmann Solver Musubi ,” J. Comput. Sci. 5 (5), 784-794 (2014).
  15. D. A. Bikulov, D. S. Senin, D. S. Demin, et al., “Implementation of the Lattice Boltzmann Method on GPU Clusters,” Vychisl. Metody Programm. 13, 13-19 (2012).
  16. D. A. Bikulov and D. S. Senin, “Implementation of the Lattice Boltzmann Method without Stored Distribution Functions on GPU,” Vychisl. Metody Programm. 14, 370-374 (2013).
  17. A. Banari, C. Jansen, S. T. Grilli, and M. Krafczyk, “Efficient GPGPU Implementation of a Lattice Boltzmann Model for Multiphase Flows with High Density Ratios,” Comput. Fluids 93, 1-17 (2014).
  18. T. Seta and R. Takahashi, “Numerical Stability Analysis of FDLBM,” J. Stat. Phys. 107 (1/2), 557-572 (2002).
  19. V. Sofonea and R. F. Sekerka, “Viscosity of Finite Difference Lattice Boltzmann Models,” J. Comput. Phys. 184 (2), 422-434 (2003).
  20. M. Tsutahara, “The Finite-Difference Lattice Boltzmann Method and Its Application in Computational Aeroacoustics,” Fluid Dyn. Res. 44 (4), 045507-045525 (2012).
  21. G. V. Krivovichev, “Investigation of the Stability of Explicit Finite Difference-Based Lattice Boltzmann Schemes,” Vychisl. Metody Programm. 13, 332-340 (2012).
  22. G. V. Krivovichev, “Stability of Finite-Difference-Based Lattice Boltzmann Schemes,” Vychisl. Metody Programm. 14, 1-8 (2013).
  23. G. V. Krivovichev and S. A. Mikheev, “Stability of Three-Layer Finite Difference-Based Lattice Boltzmann Schemes,” Vychisl. Metody Programm. 15 (2), 211-221 (2014).
  24. P. L. Bhatnagar, E. P. Gross, and M. Krook, “A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems,” Phys. Rev. 94 (3), 511-525 (1954).
  25. Q. Zou and X. He, “On Pressure and Velocity Boundary Conditions for the Lattice Boltzmann BGK Model,” Phys. Fluids 9 (6), 1591-1598 (1997).
  26. U. Ghia, K. N. Ghia, and C. T. Shin, “High-Re Solutions for Incompressible Flow Using the Navier-Stokes Equations and a Multigrid Method,” J. Comput. Phys. 48 (3), 387-411 (1982).
  27. G. J. Taylor, “On the Decay of Vortices in a Viscous Fluid,” Phil. Mag. 46, 671-674 (1923).