Application of the boundary integral equation method to numerical solution of Dirichlet’s boundary value problem in the elasticity theory on polygons

Authors

  • I.O. Arushanyan Lomonosov Moscow State University

DOI:

https://doi.org/10.26089/NumMet.v16r108

Keywords:

Dirichlet’s boundary value problem, double-layer potential, potential theory, boundary integral equations, corner points, quadrature method, two-dimensional theory of elasticity

Abstract

Dirichlet’s boundary value problem of the two-dimensional elasticity theory is considered for domains with a finite number of corner points. This problem is put in correspondence with a system of boundary integral equations used in the potential theory. An approach to the efficient approximate solution of the original boundary value problem by numerical solving the system of boundary integral equations is proposed.

Author Biography

I.O. Arushanyan

References

  1. I. O. Arushanyan, “On the Numerical Solution of Boundary Integral Equations of the Second Kind in Domains with Corner Points,” Zh. Vychisl. Mat. Mat. Fiz. 36 (6), 101-113 (1996) [Comput. Math. Math. Phys. 36 (6), 773-782 (1996)].
  2. I. O. Arushanyan, “The Application of the Boundary Integral Equation Method to Numerical Solution of Dirichlet’s Problem in Domains with Corner Points,” Vychisl. Metody Programm. 1, 1-7 (2000).
  3. I. O. Arushanyan, “Application of the Quadrature Method for Solving Boundary Integral Equations of Plane Elasticity Theory on Polygons,” Vychisl. Metody Programm. 4, 142-154 (2003).
  4. I. O. Arushanyan, “A Family of Quadrature Formulas for Solving Boundary Integral Equations,” Vychisl. Metody Programm. 14, 461-467 (2013).
  5. I. O. Arushanyan, “Numerical Solution of Boundary Integral Equations on Curvilinear Polygons,” Vestn. Mosk. Univ., Ser. 1: Mat. Mekh., No. 4, 55-57 (2014) [Moscow Univ. Math. Bull. 69 (4), 174-176 (2014)].
  6. I. O. Arushanyan, “An Exponentially Convergent Method for Solving Boundary Integral Equations on Polygons,” Vychisl. Metody Programm. 15 (3), 417-426 (2014).
  7. I. O. Arushanyan, An Exponentially Convergent Method for Solving Boundary Integral Equations in Domains with Corner Points , Report No. 9628 (Univ. of Nijmegen, Nijmegen, 1996).
  8. N. S. Bakhvalov, “On the Optimal Speed of Integrating Analytic Functions,” Zh. Vychisl. Mat. Mat. Fiz. 7 (5), 1011-1020 (1967) [USSR Comput. Math. Math. Phys. 7 (5), 63-75 (1967)].
  9. S. S. Zargaryan and V. G. Maz’ya, “The Asymptotic Form of the Solutions of the Integral Equations of Potential Theory in the Neighbourhood of the Corner Points of a Contour,” Prikl. Mat. Mekh. 48 (1), 169-174 (1984) [J. Appl. Math. Mech. 48 (1), 120-124 (1984)].
  10. V. G. Maz’ya and A. A. Soloviev, “Integral Equations of Logarithmic Potential Theory on Contours with a Cusp in Hölder Spaces,” Algebra Anal. 10 (5), 85-142 (1998) [St. Petersburg Math. J. 10 (5), 791-832 (1999)].
  11. V. G. Maz’ya, “Boundary Integral Equations,” in Analysis-4 (VINITI, Moscow, 1988), Itogi Nauki Tekh., Ser.: Sovr. Probl. Mat. Fundam. Napr., Vol. 27, pp. 131-228.
  12. V. Z. Parton and P. I. Perlin, Integral Equations in Elasticity (Nauka, Moscow, 1977; Mir, Moscow, 1982).
  13. K. E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind (Cambridge Univ. Press, Cambridge, 1997).
  14. I. Babušhka, B. Q. Guo, and E. P. Stephan, “On the Exponential Convergence of the h-p Version for Boundary Element Galerkin Methods on Polygons,” Math. Meth. Appl. Sci. 12 (5), 413-427 (1990).
  15. J. Bremer and V. Rokhlin, “Efficient Discretization of Laplace Boundary Integral Equations on Polygonal Domains,” J. Comput. Phys. 229 (7), 2507-2525 (2010).
  16. G. A. Chandler, “Superconvergent Approximations to the Solution of a Boundary Integral Equation on Polygonal Domains,” SIAM J. Numer. Anal. 23 (6), 1214-1229 (1986).
  17. I. G. Graham and G. A. Chandler, “High-Order Methods for Linear Functionals of Solutions of Second Kind Integral Equations,” SIAM J. Numer. Anal. 25 (5), 1118-1137 (1988).
  18. J. Helsing and R. Ojala, “Corner Singularities for Elliptic Problems: Integral Equations, Graded Meshes, Quadrature, and Compressed Inverse Preconditioning,” J. Comput. Phys. 227 (20), 8820-8840 (2008).
  19. W. Y. Kong, J. Bremer, and V. Rokhlin, “An Adaptive Fast Direct Solver for Boundary Integral Equations in Two Dimensions,” Appl. Comput. Harmon. Anal. 31 (3), 346-369 (2011).
  20. R. Kress, “A Nyström Method for Boundary Integral Equations in Domains with Corners,” Numer. Math. 58 (1), 145-161 (1990/91).
  21. R. Kress, Linear Integral Equations (Springer, Heidelberg, 1999).

Published

23-02-2015

How to Cite

Арушанян И.О. Application of the Boundary Integral Equation Method to Numerical Solution of Dirichlet’s Boundary Value Problem in the Elasticity Theory on Polygons // Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie). 2015. 16. 78-85. doi 10.26089/NumMet.v16r108

Issue

Section

Section 1. Numerical methods and applications