DOI: https://doi.org/10.26089/NumMet.v16r109

Parallel forming of preconditioners based on the approximation of the Sherman-Morrison inversion formula

Authors

  • I.O. Arushanyan
  • A.K. Novikov
  • S.P. Kopysov

Keywords:

linear systems
explicit preconditioning
Sherman-Morrison formula
parallel computing
graphics accelerators

Abstract

Acceleration of preconditioned bi-conjugate gradient stabilized (BiCGStab) methods with preconditioners based on the matrix approximation by the Sherman-Morrison inversion formula is studied. A new form of the parallel algorithm using matrix-vector products to generate preconditioning matrices is proposed. A parallelization efficiency of the most resource-intensive operations of such preconditioners on multi-core central and graphics processing units (CPUs and GPUs) is shown.


Published

2015-02-26

Issue

Section

Section 1. Numerical methods and applications

Author Biographies

I.O. Arushanyan

A.K. Novikov

S.P. Kopysov


References

  1. Y. Saad, Iterative Methods for Sparse Linear Systems (SIAM, Philadelphia, 2003).
  2. R. Li and Y. Saad, “GPU-Accelerated Preconditioned Iterative Linear Solvers,” J. Supercomput. 63 (2), 443-466 (2013).
  3. M. Benzi, “Preconditioning Techniques for Large Linear Systems: A Survey,” J. Comput. Phys. 182 (2), 418-477 (2002).
  4. L. Yu. Kolotilina and A. Yu. Yeremin, “Factorized Sparse Approximate Inverse Preconditionings I: Theory,” SIAM J. Matrix Anal. Appl. 14 (1), 45-58 (1993).
  5. M. J. Grote and T. Huckle, “Parallel Preconditioning with Sparse Approximate Inverses,” SIAM J. Sci. Comput. 18 (3), 838-853 (1997).
  6. R. Bru, J. Cerdán, J. Marín, and J. Mas, “Preconditioning Sparse Nonsymmetric Linear Systems with the Sherman-Morrison Formula,” SIAM J. Sci. Comput. 25 (2), 701-715 (2003).
  7. J. Sherman and W. J. Morrison, “Adjustment of an Inverse Matrix Corresponding to a Change in One Element of a Given Matrix,” Ann. Math. Stat. 21 (1), 124-127 (1950).
  8. N. S. Nedozhogin, A. S. Sarmakeeva, and S. P. Kopysov, “Sherman-Morrison High-Performance Algorithm for Matrix Inversion on GPU,” Vestn. South Ural Univ., Ser.: Vychisl. Mat. Inform. 3 (2), 101-108 (2014).
  9. S. Kopysov, I. Kuzmin, N. Nedozhogin, et al., “Scalable Hybrid Implementation of the Schur Complement Method for Multi-GPU Systems,” J. Supercomput. 69 (1), 81-88 (2014).
  10. S. P. Kopysov, I. M. Kuzmin, N. S. Nedozhogin, et al., “Parallel Implementation of a Finite-Element Algorithms on a Graphics Accelerator in the Software Package FEStudio,” Komp’yut. Issled. Model. 6 (1), 79-97 (2014).