DOI: https://doi.org/10.26089/NumMet.v16r114

Numerical simulation of the turbulence development at interaction of an electron beam with plasma

Authors

  • E.A. Berendeev
  • V.A. Vshivkov
  • A.A. Efimova
  • E.A. Mesyats

Keywords:

plasma physics
beam instability
Vlasov equation
Maxwell’s equations
particle-in-cell (PIC) method

Abstract

The interaction of an electron beam with plasma is considered. The physical mechanism of interaction between plasma and a relativistic electron beam includes a resonant excitation of plasma oscillations and the occurrence of plasma density modulation, followed by electron scattering. The numerical simulation is based on the particle-in-cell (PIC) method. A parallel algorithm is implemented to solve the problem under consideration. Two supercomputing systems were used to perform a number of numerical experiments.


Published

2015-03-22

Issue

Section

Section 1. Numerical methods and applications

Author Biographies

E.A. Berendeev

V.A. Vshivkov

A.A. Efimova

E.A. Mesyats


References

  1. A. V. Burdakov, A. P. Avrorov, A. V. Arzhannikov, et al., “Development of Extended Heating Pulse Operation Mode at GOL-3,” Fusion Sci. Technol. 63 (1T), 29-34 (2013).
  2. A. B. Mikhailovskii, Theory of Plasma Instabilities (Atomizdat, Moscow, 1970; Consultants Bureau, New York, 1974).
  3. V. N. Tsytovich, Theory of Turbulent Plasma (Atomizdat, Moscow, 1971; Consultants Bureau, New York, 1977).
  4. I. V. Timofeev and K. V. Lotov, “Relaxation of a Relativistic Electron Beam in Plasma in the Trapping Regime,” Phys. Plasmas 13 (2006).
    doi 10.1063/1.2217934
  5. A. V. Burdakov, I. A. Kotelnikov, and V. I. Erofeev, “Explanation of Turbulent Suppression of Electron Heat Transfer in GOL-3 Facility at the Stage of Relativistic Electron Beam Injection,” Fusion Sci. Technol. 47 (1T), 74-77 (2005).
  6. B. Coppi, F. Pegoraro, R. Pozzoli, and G. Rewoldt, “Slide-away Distributions and Relevant Collective Modes in High-Temperature Plasmas,” Nucl. Fusion 16 (2), 309-328 (1976).
  7. K. Baumg854rtel, “Ion Dynamics in Electron Beam-Plasma Interaction: Particle-in-Cell Simulations,” Ann. Geophys. 32 (8), 1025-1033 (2014).
  8. A. Grassi, L. Fedeli, A. Macchi, et al., “Phase Space Dynamics after the Breaking of a Relativistic Langmuir Wave in a Thermal Plasma,” Eur. Phys. J. D 68 (2014).
    doi 10.1140/epjd/e2014-50153-0
  9. F. Valentini, D. Perrone, F. Califano, et al., “Response to ’Comment on Undamped Electrostatic Plasma Waves’,” Phys. Plasmas 20 (2013).
    doi 10.1063/1.4794728
  10. Yu. N. Grigoryev, V. A. Vshivkov, and M. P. Fedoruk, Numerical Simulation by Particle-in-Cell Methods (Ross. Akad. Nauk, Novosibirsk, 2004) [in Russian].
  11. R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles (New York: McGraw-Hill, 1981; Mir, Moscow, 1987).
  12. C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulation (IOP Publ., Bristol, 1991).
  13. T. Tajima, Computational Plasma Physics (Westview Press, Boulder, 2004).
  14. V. A. Vshivkov, K. V. Vshivkov, and G. I. Dudnikova, “Algorithms for Solving the Problem of Interaction of the Laser Pulse with Plasma,” Vychisl. Tekhnol. 6 (2), 47-63 (2001).
  15. J. Villasenor and O. Buneman, “Rigorous Charge Conservation for Local Electromagnetic Field Solver,” Comput. Phys. Comm. 69 (2-3). 306-316 (1992).
  16. H. Qin, S. Zhang, J. Xiao, et al., “Why is Boris Algorithm so Good?,” Phys. Plasmas 20 (2013).
    doi 10.1063/1.4818428
  17. E. A. Berendeev and A. A. Efimova, “Implementation of the Effective Parallel Calculations to Model Large-Scale Plasma Physics Problems by the PIC-Method,” Vestn. Ufa Aviatsion. Tekh. Univ. 17 (2), 112-116 (2013).
  18. K. V. Lotov and I. V. Timofeev, “Transition Regime of the One-Dimensional Two-Stream Instability,” Vestn. Novosibirsk Univ., Ser.: Fiz. 3 (1), 62-65 (2008).
  19. K. V. Lotov, A. V. Terekhov, and I. V. Timofeev, “Saturation of Two-Stream Instability of an Electron Beam in Plasma,” Fiz. Plazmy 35 (6), 567-574 (2009) [Plasma Phys. Rep. 35 (6), 518-525 (2009)].