DOI: https://doi.org/10.26089/NumMet.v16r116

Gradient methods for solving inverse gravimetry and magnetometry problems on the Uran supercomputer

Authors

  • E.N. Akimova
  • V.E. Misilov
  • A.F. Skurydina
  • A.I. Tretyakov

Keywords:

inverse gravimetry and magnetometry problems
parallel algorithms
gradient-type methods
multi-core and graphics processors

Abstract

A modified linearized steepest descent method with variable weight factors is proposed to solve three-dimensional structural inverse gravimetry and magnetometry problems of finding the interfaces between constant density or magnetization layers in a multilayer medium. A linearized conjugate gradient method and its modified version with weight factors for solving the gravimetry and magnetometry problems in a multilayer medium is constructed. On the basis of the modified gradient-type methods, a number of efficient parallel algorithms are numerically implemented on an Intel multi-core processor and NVIDIA GPUs. The developed parallel iterative algorithms are compared for a model problem in terms of the relative error, the number of iterations, and the execution time.


Published

2015-04-03

Issue

Section

Section 1. Numerical methods and applications

Author Biographies

E.N. Akimova

V.E. Misilov

A.F. Skurydina

A.I. Tretyakov


References

  1. B. V. Numerov, “Interpretation of Gravitational Observations in the Case of One Contact Surface,” Dokl. Akad. Nauk SSSR, No. 21, 569-574 (1930).
  2. N. R. Malkin, “On the Solution of the Inverse Magnetic Problem for the Case of One Contact Surface (Layered Distribution of Masses),” Dokl. Akad. Nauk SSSR, No. 9, 232-235 (1931).
  3. A. Bakushinsky and A. Goncharsky, Ill-Posed Problems: Theory and Applications (Kluwer, Dordrecht, 1994).
  4. P. S. Martyshko, I. V. Ladovskii, and A. G. Tsidaev, “Construction of Regional Geophysical Models Based on the Joint Interpretation of Gravity and Seismic Data,” Fiz. Zemli, No. 11, 23-35 (2010) [Izv. Phys. Solid Earth 46 (11), 931-942 (2010)].
  5. V. V. Vasin, “On the Convergence of Gradient-Type Methods for Nonlinear Equations,” Dokl. Akad. Nauk 359 (1), 7-9 (1998) [Dokl. Math. 57 (2), 173-175 (1998)].
  6. E. N. Akimova, P. S. Martyshko, and V. E. Misilov, “Algorithms for Solving the Structural Gravity Problem in a Multilayer Medium,” Dokl. Akad. Nauk 453 (6), 676-679 (2013) [Dokl. Earth Sci. 453 (2), 1278-1281 (2013)].
  7. E. N. Akimova, V. V. Vasin, and V. E. Misilov, “Algorithms for Solving Inverse Gravimetry Problems of Finding the Interface between Media on Multiprocessing Computer Systems,” Vestn. Ufa Aviatsion. Tekh. Univ. 18 (2), 208-217 (2014).
  8. E. N. Akimova, V. E. Misilov, and A. F. Skurydina, “Parallel Algorithms for Solving a Structural Inverse Magnetic Problem on Multiprocessing Computer Systems,” Vestn. Ufa Aviatsion. Tekh. Univ. 18 (4), 206-215 (2014).
  9. B. T. Polyak., “The Conjugate Gradient Method in Extremal Problems,” Zh. Vychisl. Mat. Mat. Fiz. 9 (4), 807-821 (1969) [USSR Comput. Math. Math. Phys. 9 (4), 94-112 (1969)].
  10. J. C. Gilbert and J. Nocedal, “Global Convergence Properties of Conjugate Gradient Methods for Optimization,” SIAM J. Optim. 2 (1), 21-42 (1992).
  11. B. Kaltenbacher, A. Neubauer, and O. Scherzer, Iterative Regularization Methods for Nonlinear Ill-Posed Problems (De Gruyter, Berlin, 2008).
  12. V. V. Vasin and I. I. Eremin, Operators and Iterative Processes of Fejér Type (Ural Branch Russ. Acad. Sci., Ekaterinburg, 2005; De Gruyter, Berlin, 2009).
  13. P. S. Martyshko and I. L. Prutkin, “Technology of Separation of Gravitational Field Sources in Depth,” Geofiz. Zh. 25 (3), 159-168 (2003).
  14. E. N. Akimova, “Parallel Solution Algorithms of Gravimetry and Magnetometry Inverse Problems on MVS-1000,” Vestn. Univ. Nizhni Novgorod, No. 4, 181-189 (2009).
  15. A. V. Boreskov and A. A. Kharlamov, Fundamentals of CUDA Technology (DMK Press, Moscow, 2010) [in Russian].
  16. E. N. Akimova, D. V. Belousov, and V. E. Misilov, “Algorithms for Solving Inverse Geophysical Problems on Parallel Computing Systems,” Sib. Zh. Vych. Mat. 16 (2), 107-121 (2013) [Numer. Anal. Appl. 6 (2), 98-110 (2013)].