Stability study of finite-difference-based lattice Boltzmann schemes with upwind differences of high order approximation




lattice Boltzmann method, lattice Boltzmann schemes, stability with respect to initial conditions, Neumann method


The stability of three-level finite-difference-based lattice Boltzmann schemes of third and fourth orders of approximation with respect to spatial variables is studied. The stability analysis with respect to initial conditions is performed on the basis of a linear approximation. These studies are based on the Neumann method. It is shown that the stability of the schemes can be improved by the approximation convective terms in internal nodes of the grid stencils in use. In this case the stability domains are larger compared to the case of approximation in boundary nodes.

Author Biographies

G.V. Krivovichev

S.A. Mikheev


  1. S. Chen and G. D. Doolen, “Lattice Boltzmann Method for Fluid Flows,” Annu. Rev. Fluid Mech. 30, 329-364 (1998).
  2. D. A. Wolf-Gladrow, Lattice-Gas Cellular Automata and Lattice Boltzmann Models: An Introduction (Springer, Berlin, 2005).
  3. N. E. Grachev, A. V. Dmitriev, and D. S. Senin, “Simulation of Gas Dynamics with the Lattice Boltzmann Method,” Vychisl. Metody Programm. 12, 227-231 (2011).
  4. A. M. Zakharov, D. S. Senin, and E. A. Grachev, “Flow Simulation by the Lattice Boltzmann Method with Multiple-Relaxation Times,” Vychisl. Metody Programm. 15, 644-657 (2014).
  5. G. V. Krivovichev, “On the Computation of Viscous Fluid Flows by the Lattice Boltzmann Method,” Kompyut. Issled. Model. 5 (2), 165-178 (2013).
  6. G. V. Krivovichev, “Modification of the Lattice Boltzmann Method for the Computations of Viscid Incompressible Fluid Flows,” Kompyut. Issled. Model. 6 (3), 365-381 (2014).
  7. A. L. Kupershtokh, “Three-Dimensional LBE Simulations on Hybrid GPU-Clusters for the Decay of a Binary Mixture of Liquid Dielectrics with a Solute Gas to a System of Gas-Vapor Channels,” Vychisl. Metody Programm. 13, 384-390 (2012).
  8. A. L. Kupershtokh, D. A. Medvedev, and I. I. Gribanov, “Modeling of Thermal Flows in a Medium with Phase Transitions Using the Lattice Boltzmann Method,” Vychisl. Metody Programm. 15, 317-328 (2014).
  9. R. Ammer, M. Markl, U. Ljungblad, et al., “Simulating Fast Electron Beam Melting with a Parallel Thermal Free Surface Lattice Boltzmann Method,” Comput. Math. Appl. 67 (2), 318-330 (2014).
  10. M. Mendoza, S. Succi, and H. J. Herrmann, “Kinetic Formulation of the Kohn-Sham Equations for ab initio Electronic Structure Calculations,” Phys. Rev. Lett. 113 (9), 096402-1-096402-5 (2014).
  11. D. A. Bikulov, D. S. Senin, D. S. Demin, et al., “Implementation of the Lattice Boltzmann Method on GPU Clusters,” Vychisl. Metody Programm. 13, 13-19 (2012).
  12. D. A. Bikulov and D. S. Senin, “Implementation of the Lattice Boltzmann Method without Stored Distribution Functions on GPU,” Vychisl. Metody Programm. 14, 370-374 (2013).
  13. A. L. Kupershtokh, “Three-Dimensional Simulations of Two-Phase Liquid-Vapor Systems on GPU Using the Lattice Boltzmann Method,” Vychisl. Metody Programm. 13, 130-138 (2012).
  14. B. Li, G. Zhou, W. Ge, et al., “A Multi-Scale Architecture for Multi-Scale Simulation and Its Application to Gas-Solid Flows,” Particuology 15, 160-169 (2014).
  15. N. Delbosc, J. L. Summers, A. I. Khan, et al., “Optimized Implementation of the Lattice Boltzmann Method on a Graphics Processing Unit towards Real-Time Fluid Simulation,” Comput. Math. Appl. 67 (2), 462-475 (2014).
  16. P. Ripesi, L. Biferale, S. F. Schifano, and R. Tripiccione, “Evolution of a Double-Front Rayleigh-Taylor System Using a Graphics-Processing-Unit-Based High-Resolution Thermal Lattice-Boltzmann Model,” Phys. Rev. E 89. 043022-1-043022-9 (2014).
  17. T. Seta and R. Takahashi, “Numerical Stability Analysis of FDLBM,” J. Stat. Phys. 107 (1/2), 557-572 (2002).
  18. V. Sofonea and R. F. Sekerka, “Viscosity of Finite Difference Lattice Boltzmann Models,” J. Comput. Phys. 184 (2), 422-434 (2003).
  19. Y.-L. He, Q. Liu, and Q. Li, “Three-Dimensional Finite-Difference Lattice Boltzmann Model and Its Application to Inviscid Compressible Flows with Shock Waves,” Physica A 392 (20), 4884-4896 (2013).
  20. S. Chen, Z. Liu, B. Shi, et al, “A Novel Incompressible Finite-Difference Lattice Boltzmann Equation for Particle-Laden Flow,” Acta Mech. Sinica 21 (6), 574-581 (2005).
  21. D. Kandhai, W. Soll, S. Chen, et al., “Finite-Difference Lattice-BGK Methods on Nested Grids,” Comput. Phys. Commun. 129 (1-3), 100-109 (2000).
  22. A. Fakhari and T. Lee, “Finite-Difference Lattice Boltzmann Method with a Block-Structured Adaptive-Mesh-Refinement Technique,” Phys. Rev. E 89, 033310-1-033310-12 (2014).
  23. G. V. Krivovichev, “Investigation of the Stability of Explicit Finite Difference-Based Lattice Boltzmann Schemes,” Vychisl. Metody Programm. 13, 332-340 (2012).
  24. G. V. Krivovichev, “Stability of Finite-Difference-Based Lattice Boltzmann Schemes,” Vychisl. Metody Programm. 14, 1-8 (2013).
  25. G. V. Krivovichev and S. A. Mikheev, “Stability of Three-Layer Finite Difference-Based Lattice Boltzmann Schemes,” Vychisl. Metody Programm. 15 (2), 211-221 (2014).
  26. S. A. Mikheev and G. V. Krivovichev, “Stability Analysis of Two-Step Finite-Difference Schemes for the System of Kinetic Equations,” in Proc. Int. Conf. on Computer Technologies in Physical and Engineering Applications, St. Petersburg, Russia, June 30-July 4, 2014 (IEEE Press, New York, 1974), pp. 118-119.
  27. P. L. Bhatnagar, E. P. Gross, and M. Krook, “A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems,” Phys. Rev. 94 (3), 511-525 (1954).
  28. G. A. Leonov and M. M. Shumafov, Methods of Stabilization of Linear Controlled Systems (St. Petersburg Univ., St. Petersburg, 2005) [in Russian].
  29. B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C. Klema, and C. B. Moler, Matrix Eigensystem Routines: EISPACK Guide (Springer, Heidelberg, 1976).



How to Cite

Кривовичев Г.В., Михеев С.А. Stability Study of Finite-Difference-Based Lattice Boltzmann Schemes With Upwind Differences of High Order Approximation // Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie). 2015. 16. 196-204. doi 10.26089/NumMet.v16r220



Section 1. Numerical methods and applications

Most read articles by the same author(s)

1 2 > >>