A parallel implementation of sediment transport and bottom surface reconstruction problems on the basis of higher-order difference schemes

Authors

DOI:

https://doi.org/10.26089/NumMet.v16r225

Keywords:

sediment transport, bottom relief, parallel algorithms, higher-order difference schemes, diffusion-convection problem, distributed computing

Abstract

Discrete analogs of convective and diffusive transport operators of the fourth order of accuracy are studied in the case of partially filled cells. The numerical results obtained when solving the sediment transport problem on the basis of difference schemes of the second and fourth orders of accuracy are compared. These results show that the accuracy of the solutions to the diffusion problem and the convection-diffusion problem increases by a factor of 66.7 and 48.7, respectively. A library of two-layer iterative methods is built to solve the two-dimensional convection-diffusion problem on the basis of higher-order schemes for nine-diagonal difference equations on a multiprocessor computer system. An algorithm is proposed to reconstruct the submarine bottom topography on the basis of hydrographic information (the water depth at a number of points or contour levels) and its numerical implementation is performed. The proposed method is used to draw a map of the bottom relief of the Azov sea.

Author Biographies

A.I. Sukhinov

A.E. Chistyakov

A.A. Semenyakina

A.V. Nikitina

References

  1. A. A. Samarskii and A. V. Gulin, Numerical Methods (Nauka, Moscow, 1989) [in Russian].
  2. A. N. Konovalov, “The Steepest Descent Method with an Adaptive Alternating-Triangular Preconditioner,” Differ. Uravn. 40 (7), 953-963 (2004) [Differ. Equ. 40 (7), 1018-1028 (2004)].
  3. A. N. Konovalov, “To the Theory of the Alternating Triangle Iteration Method,” Sib. Mat. Zh. 43 (3), 552-572 (2002) [Sib. Math. J. 43 (3), 439-457 (2002)].
  4. A. A. Samarskii and E. S. Nikolaev, Numerical Methods for Grid Equations (Nauka, Moscow, 1989; Birkh854user, Basel, 1989).
  5. A. I. Sukhinov, “A Modified Alternating-Triangular Method for Thermal Conductivity and Filtration Problems,” in Vychisl. Sistemy Algoritmy (Rostovsk. Univ., Rostov-on-Don, 1984), pp. 52-59.
  6. V. A. Gushchin and P. V. Matyushin, “Numerical Simulation and Visualization of Vortical Structure Transformation in the Flow past a Sphere at an Increasing Degree of Stratification,” Zh. Vychisl. Mat. Mat. Fiz. 51 (2), 268-281 (2011) [Comput. Math. Math. Phys. 51 (2), 251-263 (2011)].
  7. V. A. Gushchin, V. V. Mitkin, T. I. Rozhdestvenskaya, and Yu. D. Chashechkin, “Numerical and Experimental Study of the Fine Structure of a Stratified Fluid Flow over a Circular Cylinder,” Zh. Prikl. Mekh. Tekh. Fiz. 48 (1), 43-54 (2007) [J. Appl. Mech. Tech. Phys. 48 (1), 34-43 (2007)].
  8. O. M. Belotserkovskii, V. A. Gushchin, and V. V. Shchennikov, “Use of the Splitting Method to Solve Problems of the Dynamics of a Viscous Incompressible Fluid,” Zh. Vychisl. Mat. Mat. Fiz. 15 (1), 197-207 (1975) [USSR Comput. Math. Math. Phys. 15 (1), 190-200 (1975)].
  9. A. I. Sukhinov, A. E. Chistyakov, and E. V. Alekseenko, “Numerical Realization of the Three-Dimensional Model of Hydrodynamics for Shallow Water Basins on a High-Performance System,” Mat. Model. 23 (3), 3-21 (2011) [Math. Models Comput. Simul. 3 (5), 562-574 (2011)].
  10. A. I. Sukhinov and A. E. Chistyakov, “Parallel Implementation of a Three-Dimensional Hydrodynamic Model of Shallow Water Basins on Supercomputing Systems,” Vychisl. Metody Programm. 13, 290-297 (2012).
  11. A. I. Sukhinov, A. V. Nikitina, A. E. Chistyakov, and I. S. Semenov, “Mathematical Modeling of the Formation of Suffocation Conditions in Shallow Basins Using Multiprocessor Computing Systems,” Vychisl. Metody Programm. 14, 103-112 (2013).
  12. A. I. Sukhinov, A. V. Nikitina, and A. E. Chistyakov, “Numerical Simulation of Biological Remediation of Azov Sea,” Mat. Model. 24 (9), 3-21 (2012).
  13. K. A. Beklemysheva, I. B. Petrov, and A. V. Favorskaya, “Numerical Simulation of Processes in Rigid Deformable Media in the Presence of Dynamic Contacts Using A Grid-Characteristic Method,” Mat. Model. 25 (11), 3-16 (2013).
  14. M. V. Muratov and I. B. Petrov, “Estimation of Wave Responses from Subvertical Macrofracture Systems Using a Grid Characteristic Method,” Mat. Model. 25 (3), 89-104 (2013) [Math. Models Comput. Simul. 5 (5), 479-491 (2013)].
  15. A. I. Sukhinov and A. E. Chistyakov, “Adaptive Modified Alternating Triangular Iterative Method for Solving Grid Equations with a Non-Self-Adjoint Operator,” Mat. Model. 24 (1), 3-20 (2012) [Math. Models Comput. Simul. 4 (4), 398-409 (2012)].
  16. Vl. V. Voevodin and V. P. Gergel, “Supercomputing Education: the Third Pillar of HPC,” Vychisl. Metody Programm. 11, 117-122 (2010).
  17. A. S. Antonov, I. L. Artem’eva, A. V. Bukhanovskii, et al., “Supercomputing Education Project: Year 2012,” Vestn. Univ. Nizhni Novgorod, No. 1, 12-16 (2013).
  18. B. Chetverushkin, V. Gasilov, M. Iakobovski, et al., “Unstructured Mesh Processing in Parallel CFD Project GIMM,” in Parallel Computational Fluid Dynamics (Elsevier, Amsterdam, 2005), pp. 501-508.
  19. M. V. Iakobovski, “An Incremental Algorithm for Graph Decomposition,” Vestn. Univ. Nizhni Novgorod, No. 1, 243-250 (2005).
  20. A. I. Sukhinov, A. E. Chistyakov, and A. V. Shishenya, “Error Estimation for the Diffusion Equation Solution Based on the Schemes with Weights,” Mat. Model. 25 (11), 53-64 (2013).
  21. I. B. Petrov, A. V. Favorskaya, A. V. Sannikov, and I. E. Kvasov, “Grid-Characteristic Method Using High-Order Interpolation on Tetrahedral Hierarchical Meshes with a Multiple Time Step,” Mat. Model. 25 (2), 42-52 (2013) [Math. Models Comput. Simul. 5 (5), 409-415 (2013)].
  22. M. E. Ladonkina, O. A. Neklyudova, V. F. Tishkin, and V. S. Chevanin, “A Version of Essentially Nonoscillatory High-Order Accurate Difference Schemes for Systems of Conservation Laws,” Mat. Model. 21 (11), 19-32 (2009). [Math. Models Comput. Simul. 2 (3), 304-316 (2010)].
  23. A. I. Sukhinov, A. E. Chistyakov, E. F. Timofeeva, and A. V. Shishenya, “A Mathematical Model for Coastal Wave Processes,” Mat. Model. 24 (8), 32-44 (2012).
  24. A. I. Sukhinov, A. E. Chistyakov, and N. A. Fomenko, “Method of Construction Difference Scheme for Problems of Diffusion-Convection-Reaction, Taking into Account the Degree Filling of the Control Volume,” Izv. Yuzhn. Federal. Univ., Tekh. Nauki, No. 4, 87-98 (2013).
  25. A. E. Chistyakov and A. A. Semenyakina, “Use of Interpolation Methods for Recovery Bottom Surface,” Izv. Yuzhn. Federal. Univ., Tekh. Nauki, No. 4, 21-28 (2013).
  26. A. I. Sukhinov, A. E. Chistyakov, and E. A. Protsenko, “Mathematical Modeling of Sediment Transport in the Coastal Zone of Shallow Reservoirs,” Mat. Model. 25 (12), 65-82 (2013).
  27. A. I. Sukhinov, A. E. Chistyakov, and E. A. Protsenko, “Sediment Transport Mathematical Modeling in a Coastal Zone Using Multiprocessor Computing Systems,” Vychisl. Metody Programm. 15, 610-620 (2014).

Published

19-05-2015

How to Cite

Сухинов А.И., Чистяков А.Е., Семенякина А.А., Никитина А.В. A Parallel Implementation of Sediment Transport and Bottom Surface Reconstruction Problems on the Basis of Higher-Order Difference Schemes // Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie). 2015. 16. 256-267. doi 10.26089/NumMet.v16r225

Issue

Section

Section 1. Numerical methods and applications

Most read articles by the same author(s)