Analysis of resonant excitation of layered and block media on the basis of discrete models

Authors

DOI:

https://doi.org/10.26089/NumMet.v16r231

Keywords:

microstructure, elasticity, resonance, discrete chain, moment continuum, block medium, rotational motion

Abstract

Resonant processes in structurally inhomogeneous materials of layered and block microstructure are studied in the framework of discrete models. Natural frequencies of longitudinal motion in a linear monatomic chain modeling a layered medium are determined for various boundary conditions. In order to analyze the behavior of the chain near resonant frequencies, the spectral portraits of the corresponding matrices are specified. It is shown that a special resonant frequency of rotational motion is observed when passing to the limit from a model of a monatomic chain with elastic connections to a moment continuum model. The particle rotation resistance is taken into account in this passage to the limit. This special resonant frequency does not depend on the chain length.

Author Biographies

V.M. Sadovskii

E.P. Chentsov

References

  1. A. M. Kosevich and A. S. Kovalev, “Self-Localization of Vibrations in a One-Dimensional Anharmonic Chain,” Sov. Phys. J. Exp. Theor. Phys. 40 (5), 891-896 (1975).
  2. M. Grundmann, The Physics of Semiconductors: An Introduction Including Nanophysics and Applications (Springer, Heidelberg, 2010).
  3. S. Belbasi, M. E. Foulaadvand, and Y. S. Joe, “Anti-Resonance in a One-Dimensional Chain of Driven Coupled Oscillators,” Am. J. Phys. 82 (1), 32-38 (2014).
  4. J. Coste and J. Peyraud, “Stationary Waves in a Nonlinear Periodic Medium: Strong Resonances and Localized Structures. I. The Discrete Model,” Phys. Rev. B 39 (18), 13086-13095 (1989).
  5. A.-M. Filip and S. Venakides, “Existence and Modulation of Traveling Waves in Particle Chains,” Comm. Pure Appl. Math. 52 (6), 693-735 (1999).
  6. A. Georgieva, T. Kriecherbauer, and S. Venakides, “Wave Propagation and Resonance in a One-Dimensional Nonlinear Discrete Periodic Medium,” SIAM J. Appl. Math. 60 (1), 272-294 (1999).
  7. A. Georgieva, S. Venakides, and T. Kriecherbauer, “1: 2 Resonance Mediated Second Harmonic Generation in a 1-D Nonlinear Discrete Periodic Medium,” SIAM J. Appl. Math. 61 (5), 1802-1815 (2001).
  8. L. Bonanomi, G. Theocharis, and C. Daraio, Locally Resonant Granular Chain , arXiv preprint:
    arXiv: 1403.1052v1 [cond-mat.mtrl-sci] (Cornell Univ. Library, Ithaca, 2014).
    http://arxiv.org/ftp/arxiv/papers/1403/1403.1052.pdf . Cited May 31, 2015.
  9. Z. Cun-Xi, D. Xiu-Huan, W. Rui, et al., “Fano Resonance and Wave Transmission through a Chain Structure with an Isolated Ring Composed of Defects,” Chin. Phys. B 21 (2012).
    doi 10.1088/1674-1056/21/3/034202
  10. Y. Man, N. Boechler, G. Theocharis, et al., “Defect Modes in One-Dimensional Granular Crystals,” Phys. Rev. E 85 (2012). doi 10.1103/PhysRevE.85.037601
  11. G. S. Mishuris, A. B. Movchan, and L. I. Slepyan, “Waves and Fracture in an Inhomogeneous Lattice Structure,” Waves Random Complex Media 17 (4), 409-428 (2007).
  12. M. Feckan and V. M. Rothos, “Travelling Waves in Hamiltonian Systems on 2D Lattices with Nearest Neighbor Interactions,” Nonlinearity 20 (2), 319-341 (2007).
  13. M. V. Ayzenberg-Stepanenko and L. I. Slepyan, “Resonant-Frequency Primitive Waveforms and Star Waves in Lattices,” J. Sound Vib. 313 (3-5), 812-821 (2008).
  14. A. Jeffrey and T. Taniuti, Nonlinear Wave Propagation with Applications to Physics and Magnetohydrodynamics (Academic, New York, 1964).
  15. W. D. Collins, “Forced Oscillations of Systems Governed by One-Dimensional Non-Linear Wave Equations,” Quart. J. Mech. Appl. Math. 24 (2), 129-153 (1971).
  16. A. I. Manevich and L. I. Manevich, The Mechanics of Nonlinear Systems with Internal Resonances (Imperial College Press, London, 2005).
  17. F. P. Bretherton, “Resonant Interactions between Waves. The Case of Discrete Oscillations,” J. Fluid Mech. 20 (3), 457-479 (1964).
  18. S. P. Shipman and S. Venakides, “An Exactly Solvable Model for Nonlinear Resonant Scattering,” Nonlinearity 25 (9), 2473-2501 (2012).
  19. N. N. Bogolyubov and Yu. A. Mitropolsky, Asymptotic Methods in the Theory of Non-Linear Oscillations (Fizmatlit, Moscow, 1963; Gordon and Breach, New York, 1968).
  20. V. F. Zhuravlev and D. M. Klimov, Applied Methods in the Theory of Oscillations (Nauka, Moscow, 1988) [in Russian].
  21. N. V. Karlov and N. A. Kirichenko, Oscillations, Waves, and Structures (Fizmatlit, Moscow, 2003) [in Russian].
  22. V. M. Kozin, Resonant Method of Breaking Ice Cover: Inventions and Experiments (Akad. Estestvoz., Moscow, 2007) [in Russian]..
  23. P. A. Milewski and Z. Wang, “Three-Dimensional Flexural-Gravity Waves,” Stud. Appl. Math. 131 (2), 135-148 (2013).
  24. S. K. Godunov, Modern Aspects of Linear Algebra (Nauchnaya Kniga, Novosibirsk, 1997; Amer. Math. Soc., Providence, 1998).
  25. I. A. Birger and R. R. Mavlyutov, Strength of Materials (Nauka, Moscow, 1986) [in Russian].
  26. O. V. Sadovskaya and V. M. Sadovskii, “Analysis of Rotational Motion of Material Microstructure Particles by Equations of the Cosserat Elasticity Theory,” Acoust. Phys. 56 (6), 942-950 (2010).
  27. V. Sadovskii, O. Sadovskaya, and M. Varygina, “Numerical Solution of Dynamic Problems in Couple-Stressed Continuum on Multiprocessor Computer Systems,” Int. J. Numer. Anal. Mod. B 2 (2-3), 215-230 (2011).
  28. O. Sadovskaya and V. Sadovskii, Mathematical Modeling in Mechanics of Granular Materials (Springer, Heidelberg, 2012).

Published

2015-06-13

How to Cite

Садовский В.М., Ченцов Е.П. Analysis of Resonant Excitation of Layered and Block Media on the Basis of Discrete Models // Numerical methods and programming. 2015. 16. 318-327. doi 10.26089/NumMet.v16r231

Issue

Section

Section 1. Numerical methods and applications