Formation of hydrate particles in the process of gas bubble rising


  • O.R. Nurislamov
  • S.A. Lepikhin
  • M.N. Galimzyanov


gas bubble
hydrated crust
gas hydrate
hydrate formation


A theoretical model for the process of methane bubble migration in water under the thermobaric conditions of hydrate formation is proposed. It is shown that two modes of hydrate particle formation are possible depending on the initial depth of bubble rising. A formula relating the hydrate particle porosity on this initial depth is derived. It is taken into account that the hydration shell grows inward along the contact surface between the gas and water penetrating through the pores. The effect of the initial size and depth of bubble formation on the dynamics of the hydrate formation process is analyzed. The dynamics of the hydrate formation process is studied for the following depths of gas sources: 500, 800, 1000, and 1500 m.





Section 1. Numerical methods and applications

Author Biographies

O.R. Nurislamov

S.A. Lepikhin

M.N. Galimzyanov


  1. E. J. Sauter, S. I. Muyakshin, J.-L. Charlou, et al., “Methane Discharge from a Deep-Sea Submarine Mud Volcano into the Upper Water Column by Gas Hydrate-Coated Methane Bubbles,” Earth Planet. Sci. Lett. 243 (3-4), 354-365 (2006).
  2. A. O. Maksimov  and E. V. Sosedko, “Dynamics of Sea Bubbles Covered by a Hydrate Skin,” in Proc. XVI Session of the Russian Acoustical Society, Moscow, Russia, November 14-18, 2005 (Andreyev Acoustics Inst., Moscow, 2005), pp. 459-462.
  3. M. Haeckel, E. Suess, K. Wallmann, and D. Rickert, “Rising Methane Gas Bubbles Form Massive Hydrate Layers at the Seafloor,” Geochim. Cosmochim. Acta 68 (21), 4335-4345 (2004).
  4. A. V. Egorov, R. I. Nigmatulin, and A. N. Rozhkov, Going Deep-Sea Methane Bubbles in the Solid Hydrate Forms , Preprint No. 1038 (Institute for Problems in Mechanics, Moscow, 2013).
  5. J. Greinert, Yu. Artemov, V. Egorov, et al., “1300-m-High Rising Bubbles from Mud Volcanoes at 2080 m in the Black Sea: Hydroacoustic Characteristics and Temporal Variability,” Earth Planet. Sci. Lett. 244 (1-2), 1-15 (2006).
  6. M. Römer, H. Sahling, T. Pape, et al., “Geological Control and Magnitude of Methane Ebullition from a High-Flux Seep Area in the Black Sea-the Kerch Seep Area,” Mar. Geol. 319-322, 57-74 (2012).
  7. M. Römer, H. Sahling, V. Spiess, and G. Bohrmann, “The Role of Gas Bubble Emissions at Deep-Water Cold Seep Systems: An Example from the Makran Continental Margin, Offshore Pakistan,” in Proc. 7th Int. Conf. on Gas Hydrates (ICGH 2011), Edinburgh, Scotland, United Kingdom, July 17-21, 2011. . Cited June 2, 2015.
  8. A. Skarke, C. Ruppel, M. Kodis, et al., “Widespread Methane Leakage from the Sea Floor on the Northern US Atlantic Margin,” Nat. Geosci. 7, 657-661 (2014).
  9. T. Gentz, E. Damma, J. S. von Deimling, et al., “A Water Column Study of Methane around Gas Flares Located at the West Spitsbergen Continental Margin,” Cont. Shelf Res. 72, 107-118 (2014).
  10. G. Rehder, P. W. Brewer, E. T. Peltzer, and G. Friederich, “Enhanced Lifetime of Methane Bubble Streams within the Deep Ocean,” Geophys. Res. Lett. 29 (15), 21-1-21-4 (2002).
  11. A. J. Smith, J. Mienert, S. Bünz, and J. Greinert, “Thermogenic Methane Injection via Bubble Transport into the Upper Arctic Ocean from the Hydrate-Charged Vestnesa Ridge, Svalbard,” Geochem. Geophys. Geosystem. 15 (5), 1945-1959 (2014).
  12. D. F. McGinnis, J. Greinert, Y. Artemov, et al., “Fate of Rising Methane Bubbles in Stratified Waters: How Much Methane Reaches the Atmosphere?,” J. Geophys. Res. Oceans 111 (2006).
    doi 10.1029/2005JC003183
  13. V. A. Vlasov, “Phenomenological Diffusion Theory of Formation of Gas Hydrate from Ice Powder,” Theor. Found. Chem. Eng. 46 (6), 576-582 (2012).
  14. V. A. Istomin and V. S. Yakushev, Gas Hydrates under Natural Conditions (Nedra, Moscow, 1992) [in Russian].
  15. V. P. Mel’nikov and A. N. Nesterov, “The Use of Surfactants in the Technologies of Transportation and Storage of Natural Gas in the Form of Gas Hydrates,” in Proc. Int. Conf. on Fundamental Problems of Oil and Gas Development, Production and Transportation of Hydrocarbons, Moscow, Russia, November 24-26, 2004 (GEOS, Moscow, 2004), pp. 98-99.
  16. A. N. Nesterov, “The Use of Surfactants for the Intensification of the Processes of Formation of Hydrates in the Technologies of Transportation and Storage of Gas,” in The current State of Gas Hydrate Research in the World and the Practical Results for the Gas Industry (Gazprom, Moscow, 2004), pp. 66-76.
  17. N. A. Gumerov and G. L. Chahine, “Dynamics of Bubbles in Conditions of Gas Hydrate Formation,” . Cited June 2, 2015.
  18. L. Zheng, P. D. Yapa, and F. Chen, “A Model for Simulating Deepwater Oil and Gas Blowouts - Part I: Theory and Model Formulation,” J. Hydraul. Res. 41 (4), 339-351 (2003).
  19. N. A. Gumerov, “Self-Similar Growth of Gas Hydrate Layer Separating the Gas and Liquid,” Izv. Akad. Nauk, Mekh. Zhidk. Gaza, No. 5, 78-85 (1992) [Fluid Dyn. 27 (5), 664-669 (1992)].
  20. Yu. F. Makagon, Hydrates of Natural Gases (Nedra, Moscow, 1974) [in Russian].
  21. Y.-T. Luo, J.-H. Zhu, S.-S. Fan, and G.-J. Chen, “Study on the Kinetics of Hydrate Formation in a Bubble Column,” Chem. Eng. Sci. 62 (4), 1000-1009 (2007).
  22. A. A. Rusinov, A. S. Chiglintseva, and V. Sh. Shagapov, “On the Theory of Migration of Methane Bubbles in the Condition of Hydrate Formation,” Vestn. Samara State Univ. Natural Science. No. 6, 116-125 (2013).
  23. V. Sh. Shagapov, A. S. Chiglintseva, and A. A. Rusinov, “On the Migration of Bubbles in the Hydrate Formation Conditions,” Zh. Prikl. Mekh. Tekh. Fiz. No. 2, 2015 (in press).
  24. A. V. Egorov, R. I. Nigmatulin, N. A. Rimskii-Korsakov, et al., “Breakup of Deep-Water Methane Bubbles,” Okeanologiya 50 (4), 505-514 (2010) [Oceanology 50 (4), 469-478 (2010)].
  25. A. V. Egorov, R. I. Nigmatulin, A. N. Rozhkov, et al., “About Transformation of the Deep-Water Methane Bubbles into Hydrate Powder and Hydrate Foam,” Okeanologiya 52 (2), 213-225 (2012) [Oceanology 52 (2), 194-205 (2012)].
  26. A. V. Egorov, R. I. Nigmatulin, A. N. Rozhkov, and E. S. Chernyaev, Thermal Effects in the Transport of Deep-Sea Methane Hydrates in a Leaky Container , Preprint No. 1009 (Institute for Problems in Mechanics, Moscow, 2012).
  27. V. S. Shagapov, B. I. Tazetdinov, and O. R. Nurislamov, “A Contribution to the Theory of Gas Hydrate Particle Formation and Decomposition in the Process of Their Ascent in Water,” Vestn. Tomsk. Gos. Univ. Mat. Mekh., No. 6, 106-113 (2013).