Modeling of riveted assembly of wing sheathing with forward stiffeners


  • K.S. Bormotin
  • A.I. Oleinikov
  • I.O. Ovcharov


panel riveting
ribbed stiffeners
inverse problems
geometrical parameters
finite element method


Modeling of a high-reliability riveted joint of a double-curvature panel with ribbed stiffeners is considered. A mathematical formulation of the problem devoted to riveting the joints of panels and stiffeners is given. An iterative method of determining the forward curvatures of stiffeners that provide the prescribed geometrical parameters of riveted panels is proposed. This method is implemented using the MSC.Marc and MSC.Patran finite-element analysis software packages.





Section 1. Numerical methods and applications

Author Biographies

K.S. Bormotin

• Associate Professor

A.I. Oleinikov

I.O. Ovcharov

• Student


  1. A. I. Oleinikov and K. S. Bormotin, “Modeling of the Panel-Riveting Process,” Dal’nevost. Mat. Zh. 13 (1), 102-106 (2013).
  2. A. I. Oleinikov, K. S. Bormotin, and A. M. Nogovitsin, “Simulation and Computing of the Processes of Panel Riveting,” Uchen. Zap. Komsomolsk-na-Amure State Tech. Univ. 2 (1), 41-48 (2013).
  3. R. I. Nepershin and V. V. Knigin, “Analysis of the Settlement Process of a Riveted Joint Head,” Probl. Mashinostroeniya Nadezhn. Mashin, No. 3, 87-94 (1992).
  4. G. V. Musayelyan and L. H. Zakaryan, “Investigation of Truck Frame Bending in Vertical Plane with the Help of Finite-Element Method,” Izv. Armenian Akad. Nauk 59 (3), 465-471 (2006).
  5. G. P. Cherepanov, Fracture Mechanics of Composite Materials (Nauka, Moscow, 1983) [in Russian].
  6. K. S. Bormotin, “An Iterative Method for the Solution of Inverse Shaping Problems under Creep Conditions,” Vychisl. Metody Programm. 14, 141-148 (2013).
  7. K. S. Bormotin, “Iterative Method for Solving Geometrically Nonlinear Inverse Problems of Structural Element Shaping under Creep Conditions,” Zh. Vychisl. Mat. Mat. Fiz. 53 (12), 2091-2099 (2013) [Comput. Math. Math. Phys. 53 (12), 1908-1915 (2013)].
  8. K. S. Bormotin and V. S. Logvina, “A method of Iterative Regularization for Solving Inverse Problems of Forming Structural Components,” Vychisl. Metody Programm. 15, 77-84 (2014).
  9. S. N. Korobeinikov, Nonlinear Deformation of Solids (Izd. Ross. Akad. Nauk, Novosibirsk, 2000) [in Russian].
  10. R. Hill, “On Uniqueness and Stability in the Theory of Finite Elastic Strain,” J. Mech. Phys. Solids 5 (4), 229-241 (1957).
  11. F. P. Vasil’ev, Methods of Optimization (Faktorial Press, Moscow, 2002) [in Russian].
  12. Marc Vol. A: Theory and User Information, MSC.Software Corporation. . Cited June 23, 2015.
  13. B. D. Annin, A. I. Oleinikov, and K. S. Bormotin, “Modeling of Forming of Wing Panels of the SSJ-100 Aircraft,” Zh. Prikl. Mekh. Tekh. Fiz. 51 (4), 155-165 (2010) [J. Appl. Mech. Tech. Phys. 51 (4), 579-589 (2010)].
  14. V. S. Zhernakov, A. N. Ermolenko, and R. M. Sabirov, “Effect of Stress-Strain State on the Cyclic Fracture Resistance of Riveted Joints,” Vestn. Ufa Aviatsion. Tekh. Univ. 15 (4), 67-72 (2011).
  15. E. A. Al-Bahkali, “Finite Element Modeling for Thermal Stresses Developed in Riveted and Rivet-Bonded Joints,” Int. J. Eng. Technol. 11 (06), 86-92 (2011).
  16. S. Gómez, J. Oñoro, and J. Pecharromán, “A Simple Mechanical Model of a Structural Hybrid Adhesive/Riveted Single Lap Joint,” Int. J. Adhes. Adhes. 27 (4), 263-267 (2007).
  17. T. Sadowski, M. Kneć, and P. Golewski, “Experimental Investigations and Numerical Modeling of Steel Adhesive Joints Reinforced by Rivets,” Int. J. Adhes. Adhes. 30, 338-346 (2010).