DOI: https://doi.org/10.26089/NumMet.v16r443

A modified generalized residual method for minimization problems with errors of a known level in weakened norms

Authors

  • A.A. Dryazhenkov

Keywords:

ill-posed problem
quadratic minimization
ellipsoid
approximate data
generalized residual method

Abstract

An algorithm is proposed for the numerical solution of a quadratic minimization problem on an ellipsoid specified in the Hilbert space by a compact operator. This algorithm is a certain transform of the generalized residual method designed previously for the application in nonclassical information conditions when {it a priori} information on the error level in an operator defining the cost functional is available only in the norms being weaker than the original ones. At the same time, the convergence of the algorithm is proved in the original norms. A number of simple numerical examples are discussed.


Published

2015-08-17

Issue

Section

Section 1. Numerical methods and applications

Author Biography

A.A. Dryazhenkov


References

  1. A. N. Tikhonov, A. S. Leonov, and A. G. Yagola, Nonlinear Ill-Posed Problems (Nauka, Moscow, 1995; Chapman and Hall, London, 1998).
  2. A. B. Bakushinsky and A. V. Goncharsky, Ill-Poised Problems. Numerical Methods and Applications (Mosk. Gos. Univ., Moscow, 1989) [in Russian].
  3. A. V. Goncharsky, A. S. Leonov, and A. G. Yagola, “A Certain Regularizing Algorithm for Ill-Posed Problems with an Approximately Given Operator,” Zh. Vychisl. Mat. Mat. Fiz. 12 (6), 1592-1594 (1972) [USSR Comput. Math. Math. Phys. 12 (6), 286-290 (1972)].
  4. D. L. Phillips, “A Technique for the Numerical Solution of Certain Integral Equations of the First Kind,” J. ACM 9 (1), 84-97 (1962).
  5. V. K. Ivanov, “The Approximate Solution of Operator Equations of the First Kind,” Zh. Vychisl. Mat. Mat. Fiz. 6 (6), 1089-1094 (1966) [USSR Comput. Math. Math. Phys. 6 (6), 197-205 (1966)].
  6. A. S. Antipin and F. P. Vasil’ev, “A Residual Method for Equilibrium Problems with an Inexactly Specified Set,” Zh. Vychisl. Mat. Mat. Fiz. 41 (1), 3-8 (2001) [Comput. Math. Math. Phys. 41 (1), 1-6 (2001)].
  7. F. P. Vasil’ev, A. Yu. Ivanitskii, and V. A. Morozov, “Pointwise Residual Method as Applied to Some Problems of Linear Algebra and Linear Programming,” Zh. Vychisl. Mat. Mat. Fiz. 38 (7), 1140-1152 (1998) [Comput. Math. Math. Phys. 38 (7), 1090-1102 (1998)].
  8. V. D. Skarin, “On the Application of the Residual Method for the Correction of Inconsistent Problems of Convex Programming,” Tr. Inst. Mat. Mekh., Ross. Akad. Nauk 20 (2), 268-276 (2014).
  9. O. V. Grigorieva, “Method of the Inverse Problem Solution Using an Additional a priori Information,” Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Mekh. Fiz., No. 2, 9-15 (2010).
  10. A. S. Leonov and A. G. Yagola, “Special Regularizing Methods for Ill-Posed Problems with Sourcewise Represented Solutions,” Inverse Probl. 14 (6), 1539-1550 (1998).
  11. V. P. Tanana, “A Convergence Criterion for Approximations in the Residual Method for Linear Ill-Posed Problems,” J. Inv. Ill-Posed Probl. 5 (2), 193-204 (1997).
  12. D. Lorenz and N. Worliczek, “Necessary Conditions for Variational Regularization Schemes,” Inverse Probl. 29 (2013).
    doi 10.1088/0266-5611/29/7/075016
  13. F. P. Vasil’ev, A. Yu. Ivanitskii, and V. A. Morozov, “An Estimate of the Rate of Convergence of the Discrepancy Method for a Linear Programming Problem with Approximate Data,” Zh. Vychisl. Mat. Mat. Fiz. 30 (4), 1257-1262 (1990) [USSR Comput. Math. Math. Phys. 30 (8), 204-208 (1990)].
  14. V. P. Tanana, “Optimal Order Methods of Solving Non-Linear Ill-Posed Problems,” Zh. Vychisl. Mat. Mat. Fiz. 16 (2), 503-507 (1976) [USSR Comput. Math. Math. Phys. 16 (2), 219-225 (1976)].
  15. A. S. Leonov, “Extra-Optimal Methods for Solving Ill-Posed Problems,” J. Inv. Ill-Posed Probl. 20 (5-6), 637-665 (2012).
  16. A. S. Leonov, “Locally Extra-Optimal Regularizing Algorithms,” J. Inv. Ill-Posed Probl. 22 (5), 713-737 (2014).
  17. F. P. Vasil’ev, Methods of Optimization (Factorial Press, Moscow, 2002) [in Russian].
  18. A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis (Nauka, Moscow, 1976; Dover, New York, 1999).
  19. H. Gajewski, K. Gröger, and K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen (Akademie Verlag, Berlin, 1974; Mir, Moscow, 1978).
  20. F. P. Vasil’ev, M. A. Kurzhanskii, M. M. Potapov, and A. V. Razgulin, Approximate Solution of Dual Control and Observation Problems (Maks Press, Moscow, 2010) [in Russian].