DOI: https://doi.org/10.26089/NumMet.v16r444

Iterative methods for solving inverse problems of ultrasonic tomography

Authors

  • A.V. Goncharsky
  • S.Yu. Romanov

Keywords:

coefficient inverse problems
wave equation
ultrasonic tomography
Frechet derivative
iterative methods

Abstract

This paper is dedicated to rigorous mathematical substantiation of iterative methods for solving inverse problems of ultrasonic tomography. These inverse problems are considered in the framework of a scalar model for the wave equation. This model takes into account such wave effects as diffraction, refraction, etc. The inverse problem is considered as a coefficient inverse problem. A rigorous mathematical representation is given for the Frechet derivative of the residual functional with respect to the wave velocity с(r) characterizing a nonuniform structure of the object under study. The representation for the Frechet derivative is obtained both for the two-dimensional problems and for the three-dimensional case. It is suggested that the inverse problem can be solved using this representation of the Frechet derivative together with the gradient methods of minimization for the residual functional. The proposed iterative procedure is highly parallelizable and implementable on supercomputers.


Published

2015-08-21

Issue

Section

Section 1. Numerical methods and applications

Author Biographies

A.V. Goncharsky

S.Yu. Romanov


References

  1. N. Duric, P. Littrup, C. Li, et al., “Breast Ultrasound Tomography: Bridging the Gap to Clinical Practice,” Proc. SPIE, Vol. 8320 (2012).
    doi 10.1117/12.910988
  2. N. Duric, P. Littrup, L. Poulo, et al., “Detection of Breast Cancer with Ultrasound Tomography: First Results with the Computed Ultrasound Risk Evaluation (CURE) Prototype,” Med. Phys. 34 (2), 773-785 (2007).
  3. R. Jirik, I. Peterlik, N. Ruiter, et al., “Sound-Speed Image Reconstruction in Sparse-Aperture 3-D Ultrasound Transmission Tomography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59 (2), 254-264 (2012).
  4. H. Gemmeke, L. Berger, M. Birk, et al., “Hardware Setup for the Next Generation of 3D Ultrasound Computer Tomography,” IEEE Nucl. Sci. Symp. Conf. Rec. 2449-2454 (2010).
    doi 10.1109/NSSMIC.2010.5874228
  5. J. Wiskin, D. Borup, M. Andre, et al., “Three-Dimensional Nonlinear Inverse Scattering: Quantitative Transmission Algorithms, Refraction Corrected Reflection, Scanner Design, and Clinical Results,” J. Acoust. Soc. Am. 133 (2013).
    doi 10.1121/1.4805138
  6. J. Wiskin, D. T. Borup, S. A. Johnson, and M. Berggren, “Non-Linear Inverse Scattering: High Resolution Quantitative Breast Tissue Tomography,” J. Acoust. Soc. Am. 131 (5), 3802-3813 (2012).
  7. V. A. Burov, D. I. Zotov, and O. D. Rumyantseva, “Reconstruction of Spatial Distributions of Sound Velocity and Absorption in Soft Biological Tissues Using Model Ultrasonic Tomographic Data,” Akust. Zh. 60 (4), 443-456 (2014) [Acoust. Phys. 60 (4), 479-491 (2014)].
  8. V. A. Burov, D. I. Zotov, and O. D. Rumyantseva, “Reconstruction of the Sound Velocity and Absorption Spatial Distributions in Soft Biological Tissue Phantoms from Experimental Ultrasound Tomography Data,” Akust. Zh. 61 (2), 254-273 (2015) [Acoust. Phys. 61 (2), 231-248 (2015)].
  9. A. V. Goncharsky, S. Y. Romanov, and S. Y. Seryozhnikov, “Inverse Problems of 3D Ultrasonic Tomography with Complete and Incomplete Range Data,” Wave Motion 51 (3), 389-404 (2014).
  10. A. Bakushinsky and A. Goncharsky, Ill-Posed Problems. Theory and Applications (Kluwer, Dordrecht, 1994).
  11. A. V. Goncharskii, S. L. Ovchinnikov, and S. Yu. Romanov, “On the One Problem of Wave Diagnostic,” Vestn. Mosk. Univ., Ser. 15: Vychisl. Mat. Kibern., No. 1, 7-13 (2010) [Moscow Univ. Comput. Math. Cybernet. 34 (1), 1-7 (2010)].
  12. R. J. Lavarello and M. L. Oelze, “Tomographic Reconstruction of Three-Dimensional Volumes Using the Distorted Born Iterative Method,” IEEE Trans. Med. Imaging 28 (10), 1643-1653 (2009).
  13. A. V. Goncharskii and S. Yu. Romanov, “Two Approaches to the Solution of Coefficient Inverse Problems for Wave Equations,” Zh. Vychisl. Mat. Mat. Fiz. 52 (2), 263-269 (2012) [Comput. Math. Math. Phys. 52 (2), 245-251 (2012)].
  14. S. L. Ovchinnikov and S. Yu. Romanov, “Organization of Parallel Computations When Solving the Inverse Problem of Wave Diagnostics,” Vychisl. Metody Programm. 9, 338-345 (2008).
  15. G. Chavent, “Deux Résultats sur le Problème Inverse dans les Équations aux Dérivées Partielles du Deuxième Ordre en t et sur l’Unicité de la Solution du Problème Inverse de la Diffusion,” C.R. Acad. Sc. Paris. 270, 25-28 (1970).
  16. F. Natterer, “Sonic Imaging,” in Handbook of Mathematical Methods in Imaging (Springer, New York, 2015), pp. 1253-1278.
  17. L. Beilina, M. V. Klibanov, and M. Yu. Kokurin, “Adaptivity with Relaxation for Ill-Posed Problems and Global Convergence for a Coefficient Inverse Problem,” J. Math. Sci. 167 (3), 279-325 (2010).
  18. A. V. Goncharsky and S. Y. Romanov, “Supercomputer Technologies in Inverse Problems of Ultrasound Tomography,” Inverse Probl. 29 (2013).
    doi 10.1088/0266-5611/29/7/075004
  19. A. V. Goncharsky and S. Y. Romanov, “Inverse Problems of Ultrasound Tomography in Models with Attenuation,” Phys. Med. Biol. 59 (8), 1979-2004 (2014).
  20. O. A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics (Nauka, Moscow, 1973; Springer, New York, 1985).
  21. O. A. Ladyzhenskaya, A Mixed Problem for Hyperbolic Equations (Gostekhizdat, Moscow, 1953) [in Russian].
  22. L. C. Evans, Partial Differential Equations (Am. Math. Soc. Press, Providence, 2008).
  23. F. Natterer, H. Sielschott, O. Dorn, et al., “Fréchet Derivatives for Some Bilinear Inverse Problems,” SIAM J. Appl. Math. 62 (6), 2092-2113 (2002).
  24. F. Natterer, “Possibilities and Limitations of Time Domain Wave Equation Imaging,” in Contemporary Mathematics (Am. Math. Soc. Press, Providence, 2011), Vol. 559, pp. 151-162.
  25. A. V. Goncharsky and S. Yu. Romanov, “On a Problem of Ultrasonic Tomography,” Vychisl. Metody Programm. 12, 317-320 (2011).
  26. A. V. Goncharsky and S. Yu. Romanov, “Supercomputer Technologies in the Development of Methods for Solving Inverse Problems in Ultrasound Tomography,” Vychisl. Metody Programm. 13, 235-238 (2012).
  27. A. V. Goncharsky, S. Yu. Romanov, and S. Yu. Seryozhnikov, “Problems of Limited-Data Wave Tomography,” Vychisl. Metody Programm. 15, 274-285 (2014).