DOI: https://doi.org/10.26089/NumMet.v16r446

Three-dimensional particle-in-cell plasma simulation on Intel Xeon Phi: performance optimization and case study

Authors

  • I.B. Meyerov
  • S.I. Bastrakov
  • I.A. Surmin
  • A.A. Gonoskov
  • E.S. Efimenko
  • A.V. Bashinov
  • A.V. Korzhimanov
  • A.V. Larin
  • A.A. Muraviev
  • A.I. Rozanov
  • M.R. Savichev

Keywords:

plasma physics
particle-in-cell method
high-performance computing
Xeon Phi
performance optimization

Abstract

An efficient application of computational systems equipped with Intel Xeon Phi coprocessors for the laser-plasma simulation is considered. The features of Xeon Phi architecture that influence the performance of Particle-in-Cell plasma simulation are analyzed. The PICADOR parallel plasma simulation code previously optimized for Xeon Phi is described. Its performance on Xeon Phi compared to CPU is studied on three computationally intensive plasma simulation problems. The ratio of computational time on Xeon Phi to CPU is discussed for the main stages of the Particle-in-Cell method. It is shown that, depending on the features of a physical problem, the use of Xeon Phi can be both advantageous and disadvantageous compared to CPU.


Published

2015-08-31

Issue

Section

Section 1. Numerical methods and applications

Author Biographies

I.B. Meyerov

Lobachevsky State University of Nizhni Novgorod
• Deputy Head of Department

S.I. Bastrakov

I.A. Surmin

A.A. Gonoskov

E.S. Efimenko

Institute of Applied Physics of RAS
• Junior Researcher

A.V. Bashinov

Institute of Applied Physics of RAS
• Junior Researcher

A.V. Korzhimanov

A.V. Larin

A.A. Muraviev

Institute of Applied Physics of RAS
• Junior Researcher

A.I. Rozanov

M.R. Savichev


References

  1. C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulation (McGraw-Hill, New York, 1985; Energoatomizdat, Moscow, 1989).
  2. R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles (McGraw-Hill, New York, 1981).
  3. D. Tskhakaya, “The Particle-in-Cell Method,” in Lecture Notes in Physics (Springer, Heidelberg, 2008), Vol. 739, pp. 161-189.
  4. V. P. Tarakanov, User’s Manual for Code KARAT (Berkley Research Associates, Springfield, 1992).
  5. D. V. Romanov, V. Yu. Bychenkov, W. Rozmus, et al., “Self-Organization of a Plasma due to 3D Evolution of the Weibel Instability,” Phys. Rev. Lett. 93 (21), 215004-1-215004-4 (2004).
  6. K. I. Popov, V. Yu. Bychenkov, W. Rozmus, et al., “Vacuum Electron Acceleration by Tightly Focused Laser Pulses with Nanoscale Targets,” Phys. Plasmas 16 (5), 053106-1-053106-9 (2009).
  7. E. N. Nerush and I. Kostyukov, “Carrier-Envelope Phase Effects in Plasma-Based Electron Acceleration with Few-Cycle Laser Pulses,” Phys. Rev. Lett. 103 (3), 035001-1-035001-4 (2009).
  8. M. A. Kraeva and V. E. Malyshkin, “Assembly Technology for Parallel Realization of Numerical Models on MIMD-Multicomputers,” Future Gener. Comput. Syst. 17 (6), 755-765 (2001).
  9. E. A. Berendeev, A. V. Ivanov, G. G. Lazareva, and A. V. Snytnikov, “Supercomputer Simulation of Plasma Electron Dynamics in a Magnetic Trap with Inverse Magnetic Mirrors and Multipole Magnetic Walls,” Vychisl. Metody Programm. 14, 149-154 (2013).
  10. A. Yu. Perepelkina, V. D. Levchenko, and I. A. Goryachev, “3D3V Kinetic Code CFHall for Magnetized Plasma Simulation,” Mat. Model. 25 (11), 98-110 (2013).
  11. R. A. Fonseca, J. Vieira, F. Fiuza, et al., “Exploiting Multi-Scale Parallelism for Large Scale Numerical Modelling of Laser Wakefield Accelerators,” Plasma Phys. Control. Fusion 55 (12), 124011-1-124011-9 (2013).
  12. A. Pukhov, “Three-Dimensional Electromagnetic Relativistic Particle-in-Cell Code VLPL (Virtual Laser Plasma Lab),” J. Plasma Phys. 61 (3), 425-433 (1999).
  13. K. J. Bowers, B. J. Albright, L. Yin, et al., “Advances in Petascale Kinetic Plasma Simulation with VPIC and Roadrunner,” J. Phys.: Conf. Ser. 180 (1) (2009).
    doi 10.1088/1742-6596/180/1/012055
  14. H. Burau, R. Widera, W. Hönig, et al., “PIConGPU: A Fully Relativistic Particle-in-Cell Code for a GPU Cluster,” IEEE Trans. Plasma Sci. 33 (10), 2831-2839 (2010).
  15. S. Bastrakov, R. Donchenko, A. Gonoskov, et al., “Particle-in-Cell Plasma Simulation on Heterogeneous Cluster Systems,” J. Comput. Sci. 3 (6), 474-479 (2012).
  16. S. Bastrakov, I. Meyerov, I. Surmin, et al., “Particle-in-Cell Plasma Simulation on CPUs, GPUs and Xeon Phi Coprocessors,” in Lecture Notes in Computer Science (Springer, Heidelberg, 2014), Vol. 8488, pp. 513-514.
  17. S. I. Bastrakov, I. B. Meyerov, I. A. Surmin, et al., “Dynamic Load Balancing in the PICADOR Plasma Simulation Code,” Vychisl. Metody Programm. 14, 67-74 (2013).
  18. I. A. Surmin, S. I. Bastrakov, A. A. Gonoskov, et al., “Particle-in-Cell Plasma Simulation Using Intel Xeon Phi Coprocessors,” Vychisl. Metody Programm. 15, 530-536 (2014).
  19. A. Gonoskov, S. Bastrakov, E. Efimenko, et al., “Extended Particle-in-Cell Schemes for Physics in Ultrastrong Laser Fields: Review and Developments,” Phys. Rev. E 92 (2015).
    doi 10.1103/physreve.92.023305
  20. I. A. Surmin, S. I. Bastrakov, E. S. Efimenko, et al., Particle-in-Cell Laser-Plasma Simulation on Xeon Phi Coprocessors , arXiv preprint: 1505.07271v1 [physics.comp-ph] (Cornell Univ. Library, Ithaca, 2015), available at
    http://arxiv.org/abs/1505.07271v1.
  21. H. Nakashima, “Manycore Challenge in Particle-in-Cell Simulation: How to Exploit 1 TFlops Peak Performance for Simulation Codes with Irregular Computation,” Comput. Electr. Eng. (in press).
    doi 10.1016/j.compeleceng.2015.03.010
  22. M. Bussmann, H. Burau, T. E. Cowan, et al., “Radiative Signatures of the Relativistic Kelvin-Helmholtz Instability,” in Proc. Int. Conf. on High Performance Computing, Networking, Storage and Analysis, Denver, USA, November 17-21, 2013 (ACM Press, New York, 2013),
    doi 10.1145/2503210.2504564
  23. V. K. Decyk and T. V. Singh, “Particle-in-Cell Algorithms for Emerging Computer Architectures,” Comput. Phys. Commun. 185 (3), 708-719 (2014).
  24. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, London, 1995).
  25. J.-P. Berenger, “A Perfectly Matched Layer for the Absorption of Electromagnetic Waves,” J. Comput. Phys. 114 (2), 185-200 (1994).
  26. T. Zh. Esirkepov, “Exact Charge Conservation Scheme for Particle-in-Cell Simulation with an Arbitrary Form-Factor,” Comput. Phys. Commun. 135 (2), 144-153 (2001).
  27. J. Villasenor and O. Buneman, “Rigorous Charge Conservation for Local Electromagnetic Field Solvers,” Comput. Phys. Commun. 69 (2-3), 306-316 (1992).
  28. A. Macchi, M. Borghesi, and M. Passoni, “Ion Acceleration by Superintense Laser-Plasma Interaction,” Rev. Mod. Phys. 85 (2), 751-793 (2013).
  29. S. C. Wilks, A. B. Langdon, T. E. Cowan, et al., “Energetic Proton Generation in Ultra-Intense Laser-Solid Interactions,” Phys. Plasmas 8 (2), 542-549 (2001).
  30. J. S. Green, A. P. L. Robinson, N. Booth, et al., “High Efficiency Proton Beam Generation through Target Thickness Control in Femtosecond Laser-Plasma Interactions,” Appl. Phys. Lett. 104 (2014).
    doi 10.1063/1.4879641
  31. K. H. Pae, I. W. Choi, S. J. Hahn, et al., “Proposed Hole-Target for Improving Maximum Proton Energy Driven by a Short Intense Laser Pulse,” Phys. Plasmas 16 (2009).
    doi 10.1063/1.3174434
  32. J. H. Sung, S. K. Lee, T. J. Yu, et al., “0.1 Hz 1.0 PW Ti: Sapphire Laser,” Opt. Lett. 35 (18), 3021-3023 (2010).
  33. A. Pipahl, E. A. Anashkina, M. Toncian, et al., “High-Intensity Few-Cycle Laser-Pulse Generation by the Plasma-Wakefield Self-Compression Effect,” Phys. Rev. E 87 (2013).
    doi 10.1103/PhysRevE.87.033104
  34. L. A. Abramyan, A. G. Litvak, V. A. Mironov, and A. M. Sergeev, “Self-Focusing and Relativistic Waveguiding of an Ultrashort Laser Pulse in a Plasma,” Zh. Eksp. Teor. Fiz. 102 (6), 1816-1824 (1992) [J. Exp. Theor. Phys. 75 (6), 978-982 (1992)].
  35. A. R. Bell and J. G. Kirk, “Possibility of Prolific Pair Production with High-Power Lasers,” Phys. Rev. Lett. 101 (2008).
    doi 10.1103/PhysRevLett.101.200403
  36. A. V. Bashinov, A. A. Gonoskov, A. V. Kim, et al., “New Horizons for Extreme Light Physics with Mega-Science Project XCELS,” Eur. Phys. J. Spec. Top. 223 (6), 1105-1112 (2014).
  37. A. Gonoskov, A. Bashinov, I. Gonoskov, et al., “Anomalous Radiative Trapping in Laser Fields of Extreme Intensity,” Phys. Rev. Lett. 113 (2014).
    doi 10.1103/PhysRevLett.113.014801