DOI: https://doi.org/10.26089/NumMet.v16r449

Adaptive unstructured mesh generation methods for hydrogeological problems

Authors

  • A.V. Plenkin
  • A.Yu. Chernyshenko
  • V.N. Chugunov
  • I.V. Kapyrin

Keywords:

mesh generator
hydrogeological modeling
triangular-prismatic meshes
octree meshes

Abstract

Two mesh generators embedded in the GeRa code for the solution of groundwater flow and radionuclide transport problems are discussed. The first one is a triangular-prismatic generator with the ability of cell degeneration; the second one is the polyhedral octree mesh generator implementing the cut-cell technology. These generators allow the user to automatically create conformal polyhedral adaptive grids in three-dimensional geological domains with consideration of complex boundaries, top and bottom geological layer surfaces, pinch-outs, and geological heterogeneities.


Published

2015-09-13

Issue

Section

Section 1. Numerical methods and applications

Author Biographies

A.V. Plenkin

A.Yu. Chernyshenko

V.N. Chugunov

I.V. Kapyrin


References

  1. I. V. Kapyrin, S. S. Utkin, and Yu. V. Vasыilevskii, “Concept of the Design and Application of the GeRa Numerical Code for Radioactive Waste Disposal Safety Assessment,” Voprosy Atom. Nauki Tekh. Ser.: Math. Model. Phys. Proc., No. 4, 44-54 (2014).
  2. Yu. Vasilevskii, A. Vershinin, A. Danilov, and A. Plenkin, “A Technology of Constructing Tetrahedral Meshes for Domains Given in a CAD System,” in Matrix Methods and Technologies for Solving Large Problems (Inst. Numer. Math. Russ. Acad. Sci., Moscow, 2005), pp. 21-32.
  3. A. Yu. Chernyshenko, “Generation of Octree Meshes with Cut Cells in Multiple Material Domains,” Vychisl. Metody Programm. 14, 229-245 (2013).
  4. M. L. Sidorov and V. A. Pronin, “Unstructured Prismatic Discretization of Complex Geological Structures in the Parallel Mode,” Voprosy Atom. Nauki Tekh. Ser.: Math. Model. Phys. Proc., No. 1, 47-55 (2015).
  5. H.-J. G. Diersch, FEFLOW Finite Element Subsurface Flow and Transport Simulation System (WASY GmbH, Berlin, 2005).
  6. S. Panday, C. D. Langevin, R. G. Niswonger, et al., MODFLOW-USG Version 1: An Unstructured Grid Version of MODFLOW for Simulating Groundwater Flow and Tightly Coupled Processes Using a Control Volume Finite-Difference Formulation , U.S. Geological Survey Techniques and Methods.
    http://water.usgs.gov/ogw/mfusg/#more . Cited October 5, 2015.
  7. P. L. George, “Automatic Mesh Generation and Finite Element Computation,” Handb. Numer. Anal. 4, 127-148 (1996).
  8. A. A. Danilov, “Unstructured Tetrahedral Mesh Generation Technology,” Zh. Vychisl. Mat. Mat. Fiz. 50 (1), 146-163 (2010) [Comput. Math. Math. Phys. 50 (1), 139-156 (2010)].
  9. V. L. Freedman, X. Chen, S. Finsterle, et al., “A High-Performance Workflow System for Subsurface Simulation,” Environ. Model. Softw. 55, 176-189 (2014).
  10. Y. Livnat, H.-W. Shen, and C. R. Johnson, “A Near Optimal Isosurface Extraction Algorithm Using the Span Space,” IEEE Trans. Vis. Comput. Graphics 2 (1), 73-84 (1996).
  11. C.-C. Ho, F.-C. Wu, B.-Y. Chen, et al., “Cubical Marching Squares: Adaptive Feature Preserving Surface Extraction from Volume Data,” Comput. Graphics Forum 24 (3), 537-545 (2005).
  12. Z. Wu and J. M. Sullivan, “Multiple Material Marching Cubes Algorithm,” Int. J. Numer. Meth. Eng. 58 (2), 189-207 (2003).
  13. B. Yahiaoui, H. Borouchaki, and A. Benali, “Hex-Dominant Mesh Improving Quality to Tracking Hydrocarbons in Dynamic Basins,” Oil Gas Sci. Technol. 69 (4), 565-572 (2014).
  14. HEXPRESS: Unstructured Full-Hexahedral Meshing.
    http://www.numeca.com/. Cited October 5, 2015.
  15. MeshGems: Suite of Reliable Meshing Software Components for High-Demanding CAD/CAE Developers.
    http://meshgems.com/volume-meshing-meshgems-hexa.html . Cited October 5, 2015.
  16. Hexotic CAD/CAE Developers.
    http://www-roc.inria.fr/gamma/gamma/Membres/CIPD/Loic.Marechal/Research/Hexotic.html . Cited October 5, 2015.
  17. ANSYS ICEM CFD.
    http://www.ansys.com/Products/Other+Products/ANSYS+ICEM+CFD . Cited October 5, 2015.