Composition of infinitary structures


  • G.G. Ryabov
  • V.A. Serov


symbolic matrix
global k-ary tree
k-tuples of natural numbers
difference tabloid
symmetry of prime numbers
incompatibility relation


The infinitary structure of an n-cube, global k-ary trees, and natural numbers are considered as a single genetic structure. A number of geometric characteristics of the shortest paths in an n-cube are specified and the properties of prime number symmetry among the natural numbers are studied on the basis of this structure.





Section 1. Numerical methods and applications

Author Biographies

G.G. Ryabov

V.A. Serov


  1. J. Pintz, Patterns of Primes in Arithmetic Progressions , arXiv preprint: 1509.01564v2 [math.NT] (Cornell Univ. Library, Ithaca, 2015), available at
  2. K. Ford, B. Green, S. Konyagin, et al., Long Gaps between Primes , arXiv preprint: 1412.5029v2 [math.NT] (Cornell Univ. Library, Ithaca, 2015), available at
  3. D. H. J. Polymath, Variants of the Selberg Sieve, and Bounded Intervals Containing Many Primes , arXiv preprint: 1407.4897v4 [math.NT] (Cornell Univ. Library, Ithaca, 2014),
    available at
  4. G. G. Ryabov, “On the Quaternary Coding of Cubic Structures,” Vychisl. Metody Programm. 10, 340-347 (2009).
  5. G. G. Ryabov, “Hausdorff Metric on Faces of the n-Cube,” Fundam. Prikl. Mat. 16 (1), 151-155 (2010) [J. Math. Sci. 177 (4), 619-622 (2011)].
  6. G. G. Ryabov and V. A. Serov, “Multidimensional Metro and Symbol Matrices,” Int. J. Open Inform. Technol. 2 (11), 10-18 (2014). . Cited November 6, 2015.
  7. G. Ryabov and V. Serov, “On Classification of k-Dimension Paths in n-Cube,” App. Math. 5 (4), 723-727 (2014).
    doi 10.4236/am.2014.54069
  8. G. G. Ryabov and V. A. Serov, “Polymorphism of Symbolic Ternary Matrices and Genetic Space of the Shortest k-Paths in the n-Cube,” Int. J. Open Inform. Technol. 3 (7), 1-11 (2015). . Cited November 6, 2015.