DOI: https://doi.org/10.26089/NumMet.v17r101

Intermittency of vector fields and natural random number generators

Authors

  • A.O. Kalinin
  • D.D. Sokoloff

Keywords:

intermittency
vector field
Jacobi equation
random numbers
Lyapunov exponent

Abstract

Growth of Jacobi fields on geodesic lines over a 2D manifold with Gaussian curvature as a random process is considered. We study various «natural» random number generators on the basis of the hypothesis that the decimals of irrational numbers are randomly distributed.


Published

2016-01-19

Issue

Section

Section 1. Numerical methods and applications

Author Biographies

A.O. Kalinin

D.D. Sokoloff


References

  1. М. Е. Аrtyushkova and D. D. Sokoloff, “Numerical Modeling of Conjugated Point Distribution along a Geodesic with Random Curvature,” Vychisl. Metody Programm. 5, 291-296 (2004).
  2. М. Е. Аrtyushkova and D. D. Sokolov, “Numerical Modeling of the Solutions of the Jacobi Equation on a Geodesic with Random Curvature,” Astron. Zh. 82 (7), 584-589 (2005) [Astron. Rep. 49 (7), 520-525 (2005)].
  3. М. Е. Аrtyushkova and D. D. Sokoloff, “Modelling Small-Scale Dynamo by the Jacobi Equation,” Magnetohydrodynamics 42 (1), 3-19 (2006).
  4. D. A. Grachev and D. D. Sokoloff, “Numerical Modeling of Growth of Multiplicative Random Quantities,” Vychisl. Metody Programm. 8, 1-5 (2007).
  5. E. A. Mikhailov, D. D. Sokoloff, and V. N. Tutubalin, “The Fundamental Matrix for the Jacobi Equation with Random Coefficients,” Vychisl. Metody Programm. 11, 261-268 (2010).
  6. E. A. Illarionov, D. D. Sokoloff, and V. N. Tutubalin, “Stationary Distribution of Product of Matrices with Random Coefficients,” Vychisl. Metody Programm. 13, 218-225 (2012).
  7. Ya. B. Zel’dovich, S. A. Molchanov, A. A. Ruzmaikin, and D. D. Sokolov, “Intermittency in Random Media,” Usp. Phys. Nauk 152 (1), 3-32 (1987) [Soviet Phys. Usp. 30 (5), 353-369 (1987)].
  8. Ya. B. Zel’dovich, A. A. Ruzmaikin, and D. D. Sokoloff, The Almighty Chance (World Scientific, Singapore, 1991).
  9. A. Brandenburg, D. Sokoloff, and K. Subramanian, “Current Status of Turbulent Dynamo Theory: From Large-Scale to Small-Scale Dynamos,” Space Sci. Rev. 169, 123-157 (2012).
  10. V. G. Lamburt, D. D. Sokolov, and V. N. Tutubalin, “Jacobi Fields along a Geodesic with Random Curvature,” Mat. Zametki 74 (3), 416-424 (2003) [Math. Notes 74 (3), 393-400 (2003)].
  11. Ya. B. Zel’dovich, “Observations in a Universe Homogeneous in the Mean,” Astron. Zh. 41 (1), 19-24 (1964) [Soviet Astron. 8 (1), 13-16 (1964)].