The stewartson layer under the influence of the lorentz and archimedean forces

Authors

  • P. Hejda
  • M. Reshetnyak
  • I. Cupal

Keywords:

слой Стюаpтсона
сила Лоpенца
сила Архимеда
сеточно-спектральный метод
конечно-pазностная аппpоксимация
супеpвpащение
итерационные алгоритмы
математическое моделирование

Abstract

The influence of the Lorentz force on the Stewartson layer evolving at the rotating inner core is investigated for the case when its nonlinear effects are not ignored. The influence of the imposed Archimedean force is also examined. The problem is solved using a finite difference method for the basic physical variables of velocity, magnetic field, and pressure. The pressure variable is subsequently corrected by a fractional step method. When only viscous forces are assumed at the inner core boundary, no differences with the previous results are found. However, when the influence of the Lorentz force is considered and all its nonlinear effects are taken into account, the superrotation of the outer core exhibits a different character and a larger amplitude than in the case when the nonlinear effects are ignored. The Archimedean force distinctly increases the Stewartson layer width and thus the change in the azimuthal velocity at the inner core boundary is not as sharp.


Published

2003-05-20

Issue

Section

Section 1. Numerical methods and applications

Author Biographies

P. Hejda

Institute of Geophysics of CAS
Boční II/1401 141 31 Prague 4 – Spořilov

M. Reshetnyak

I. Cupal


References

  1. A.P. Anufriev and P. Hejda, «Effect of the magnetic field at the inner core boundary on the flow in the Earth’s core», Phys. Earth Planet. Int., T. 106: 19-30, 1998.
  2. A.P. Anufriev and P. Hejda, «The influence of a homogeneous magnetic field on the Ekman and Stewartson layers», Studia Geoph. et Geod., T. 42: 254-260, 1998.
  3. C. Canuto, M.Y. Hussini, A. Quarteroni, and T.A. Zang, Spectral Methods in Fluids Dynamics, Berlin: Springer-Verlag, 1988.
  4. E. Dormy, P. Cardin, and D. Jault, «MHD flow in a slightly differentially rotating spherical shell, with conducting inner core, in a dipolar magnetic field», Phys. Earth Planet. Int., T. 160: 15-30, 1998.
  5. C.J. Heinrich and D.W. Pepper, Intermediate Finite Element Method, New York: Taylor & Francis, 1999.
  6. P. Hejda and M. Reshetnyak, «A grid-spectral method of the solution of the 3D kinematic geodynamo with the inner core», Studia Geoph. et. Geod., T. 43: 319-325, 1999.
  7. P. Hejda and M. Reshetnyak, «The grid-spectral approach to 3D geodynamo modeling», Computers & Geosciences, T. 26: 167-175, 2000.
  8. P. Hejda, I. Cupal, and M. Reshetnyak, «On the application of grid-spectral method to the solution of geodynamo equations», In: Dynamo and Dynamics, a Mathematical Challenge, ed. by P. Chossat, D. Armbruster, I. Oprea. Nato Sci. Ser., 26/II, Dordrecht: Kluwer Acad. Publ., 181-187, 2001.
  9. R. Hollerbach, «Magnetohydrodynamic Ekman and Stewartson layers in a rotating spherical shell», Proc. Roy. Soc., T. A444: 333-346, 1994.
  10. I. Proudman, «The almost-rigid rotation of viscous fluid between concentric spheres», J. Fluid. Mech., T. 1: 505-516, 1956.
  11. K. Stewartson, «On almost-rigid rotations», J. Fluid. Mech., T. 26: 131-144, 1966.