DOI: https://doi.org/10.26089/NumMet.v17r109

Methods and concepts of vortex flow visualization in the problems of computational fluid dynamics

Authors

  • K.N. Volkov
  • V.N. Emelyanov
  • I.V. Teterina
  • M.S. Yakovchuk

Keywords:

scientific visualization
computational fluid dynamics
fluid flow
vortex
vector field
tensor field
jet
cavity
channel

Abstract

A number of concepts and methods for the visual representation of numerical results obtained when solving fluid and gas dynamics problems related to the simulation of vortex flows are considered. Approaches to the visualization of vortex flows based on the use of various definitions and criteria of vortex identification are discussed. Examples of visual representation of the solutions to some fluid and gas dynamics problems requiring the calculation of vortex flows in jets, channels and cavities as well as separated flows arising from the flow over bodies of different shapes are given. Visualization of the results obtained with the vortex resolved methods for turbulence simulations are also discussed.


Published

2016-03-11

Issue

Section

Section 1. Numerical methods and applications

Author Biographies

K.N. Volkov

V.N. Emelyanov

I.V. Teterina

M.S. Yakovchuk


References

  1. C. D. Hansen and C. R. Johnson (Eds.), The Visualization Handbook (Elsevier, Burlington, 2005).
  2. A. E. Bondarev, V. A. Galaktionov, and V. M. Chechetkin, “Analysis of the Development Concepts and Methods of Visual Data Representation in Computational Physics,” Zh. Vychisl. Mat. Mat. Fiz. 51 (4), 669-683 (2011) [Comput. Math. Math. Phys. 51 (4), 624-636 (2011)].
  3. K. N. Volkov and V. N. Emel’yanov, Large Eddy Simulation in Calculations of Turbulent Flows (Fizmatlit, Moscow, 2008) [in Russian].
  4. J. Jeong and F. Hussain, “On the Identification of a Vortex,” J. Fluid Mech. 285, 69-94 (1995).
  5. J. C. R. Hunt, A. A. Wray, and P. Moin, Eddies, Stream, and Convergence Zones in Turbulent Flows , Report CTR-S88 (Center for Turbulent Research, Palo Alto, 1988), pp. 193-208.
  6. G. Haller, “An Objective Definition of a Vortex,” J. Fluid Mech. 525, 1-26 (2005).
  7. M. Jiang, R. Machiraju, and D. Thompson, “Detection and Visualization of Vortices,” in The Visualization Handbook (Orlando, Academic, 2005), pp. 287-301.
  8. Y. Levy, D. Degani, and A. Seginer, “Graphical Visualization of Vortical Flows by Means of Helicity,” AIAA J. 28 (8), 1347-1352 (1990).
  9. C. H. Berdahl and D. S. Thompson, “Eduction of Swirling Structure Using the Velocity Gradient Tensor,” AIAA J. 31 (1), 97-103 (1993).
  10. M. S. Chong, A. E. Perry, and B. J. Cantwell, “A General Classification of Three-Dimensional Flow Fields,” Phys. Fluids A 2 (5), 765-777 (1990).
  11. M. Tabor and I. Klapper, “Stretching and Alignment in Chaotic and Turbulent Flows,” Chaos Solitons Fract. 4 (6), 1031-1055 (1994).
  12. D. C. Banks and B. A. Singer, “A Predictor-Corrector Technique for Visualizing Unsteady Flow,” IEEE Trans. Vis. Comput. Graph. 1 (2), 151-163 (1995).
  13. D. Sujudi and R. Haimes, “Identification of Swirling Flow in 3D Vector Fields,” AIAA Paper 95-1715 (1995).
  14. M. Roth and R. Peikert, “A Higher-Order Method for Finding Vortex Core Lines,” in Proc. IEEE Conf. on Visualization, Research Triangle Park, USA, October 18-23, 1998 (IEEE Press, Los Alamos, 1998), pp. 143-150.
  15. R. C. Strawn, D. N. Kenwright, and J. Ahmad, “Computer Visualization of Vortex Wake Systems,” AIAA J. 37 (4), 511-512 (1999).
  16. I. A. Sadarjoen, F. H. Post, B. Ma, et al., “Selective Visualization of Vortices in Hydrodynamic Flows, in Proc. IEEE Conf. on Visualization, Research Triangle Park, USA, October 18-23, 1998 (IEEE Press, Los Alamos, 1998), pp. 419-422.
  17. M. Jiang, R. Machiraju, and D. Thompson, “A Novel Approach to Vortex Core Region Detection,” in Proc. 4th Joint Eurographics/IEEE TCVG Symp. on Visualization (VisSym-02), Barcelona, Spain, 27-29 May 27-29, 2002 (Eurographics Association, Aire-la-Ville, 2002), pp. 217-225.
  18. S. Kida and H. Miura, “Identification and Analysis of Vortical Structures,” Eur. J. Mech. B Fluids 17 (4), 471-488 (1998).
  19. Y. Dubief and F. Delcayre, “On Coherent-Vortex Identification in Turbulence,” J. Turbul. 1 (1), 1-22 (2000).
  20. R. D. Knowles, M. V. Finnis, A. J. Saddington, and K. Knowles, “Planar Visualization of Vortical Flows,” Proc. of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 220 (6), 619-627 (2006).
    doi 10.1243/09544100JAERO75
  21. K. N. Volkov, “Topology of an Incompressible Viscous-Fluid Flow in a Cubic Cavity with a Moving Cover,” Inzh. Fiz. Zh. 79 (2), 86-71 (2006) [J. Eng. Phys. Thermophys. 79 (2), 295-300 (2006)].
  22. K. N. Volkov, “An Implementation of the Splitting Scheme on Staggered Grids for Computing Nonstationary Flows of Viscous Incompressible Fluid,” Vychisl. Metody Programm. 6, 269-282 (2005).
  23. K. N. Volkov, “Combustion of Single Aluminium Droplet in Two-Phase Flow,” in Heterogeneous Combustion (Nova Science, New York, 2011), pp. 191-260.
  24. V. A. Gushchin, A. V. Kostomarov, and P. V. Matyushin, “3D Visualization of the Separated Fluid Flows,” J. Vis. 7 (2), 143-150 (2004).
  25. K. Volkov, S. Mitchell, and S. Handsaker, “Aerodynamics and Performance of Wind Turbines Integrated in the Existing Infrastructure,” in Advances in Energy Research and Developments (ORIC Publ., Little Rock, 2014), pp. 129-188.
  26. L. E. Jones, R. D. Sandberg, and N. D. Sandham, “Direct Numerical Simulations of Forced and Unforced Separation Bubbles on an Airfoil at Incidence,” J. Fluid Mech. 602, 175-207 (2008).
  27. K. N. Volkov, “Large-Eddy Simulation of Turbulence-Induced Aero-Optical Effects in Free Shear and Wall Bounded Flows,” in Turbulent Flows: Prediction, Modeling and Analysis (Nova Science, New York, 2013), pp. 27-69.