Study of properties of a finite-difference scheme for the advection stage implementation in the lattice Boltzmann method
Authors
-
G.V. Krivovichev
-
E.S. Marnopolskaya
Keywords:
lattice Boltzmann method
splitting into physical processes
advection equation
stability with respect to initial conditions
Neumann method
Abstract
A finite-difference single-parameter scheme for solving the system of advection equations arising in the application of the method of splitting into physical processes to a system of kinetic equations is studied. The stability analysis is performed using the Neumann method. A stability domain in the «scheme’s parameter-Courant number» plane is constructed. It is shown that an appropriate choice of this parameter allows one to regulate the dispersive and dissipative properties of the scheme. An approach of choosing the optimal parameter is proposed on the basis of an optimization of dispersive and dissipative surfaces. An efficiency of the scheme with the optimal parameter is illustrated by the numerical solution of the cavity flow problem and the problem on the propagation of shear waves in viscous fluid.
Section
Section 1. Numerical methods and applications
References
- S. Chen and G. D. Doolen, “Lattice Boltzmann Method for Fluid Flows,” Annu. Rev. Fluid Mech. 30, 329-364 (1998).
- N. E. Grachev, A. V. Dmitriev, and D. S. Senin, “Simulation of Gas Dynamics with the Lattice Boltzmann Method,” Vychisl. Metody Programm. 12, 227-231 (2011).
- A. M. Zakharov, D. S. Senin, and E. A. Grachev, “Flow Simulation by the Lattice Boltzmann Method with Multiple-Relaxation Times,” Vychisl. Metody Programm. 15, 644-657 (2014).
- N. M. Evstigneev and N. A. Magnitskii, “Nonlinear Dynamics in the Initial-Boundary Value Problem on the Fluid Flow from a Ledge for the Hydrodynamic Approximation to the Boltzmann Equations,” Differ. Uravn. 46 (12), 1794-1798 (2010) [Differ. Equ. 46 (12), 1794-1798 (2010)].
- N. A. Vladimirova, A. I. Prostomolotov, and N. A. Verezub, “Computer Simulation of Aerohydrodynamics Problems on the Base of Numerical Solution of Kinetic Equation by Lattice Boltzmann Method in the XFlow Software Package,” Fiz. Khim. Kinetika Gaz. Dinamika 16 (1), 1-14 (2015).
- A. L. Kupershtokh, “Three-Dimensional Simulations of Two-Phase Liquid-Vapor Systems on GPU Using the Lattice Boltzmann Method,” Vychisl. Metody Programm. 13, 130-138 (2012).
- A. L. Kupershtokh, “Three-Dimensional LBE Simulations on Hybrid GPU-Clusters for the Decay of a Binary Mixture of Liquid Dielectrics with a Solute Gas to a System of Gas-Vapor Channels,” Vychisl. Metody Programm. 13, 384-390 (2012).
- A. L. Kupershtokh, D. A. Medvedev, and I. I. Gribanov, “Modeling of Thermal Flows in a Medium with Phase Transitions Using the Lattice Boltzmann Method,” Vychisl. Metody Programm. 15 (2), 317-328 (2014).
- D. Bikulov, A. Saratov, and E. Grachev, “Prediction of the Permeability of Proppant Packs under Load,” Int. J. Mod. Phys. C 26, 1550117-1-1550117-16 (2015).
- D. A. Bikulov, D. S. Senin, D. S. Demin, et al., “Implementation of the Lattice Boltzmann Method on GPU Clusters,” Vychisl. Metody Programm. 13, 13-19 (2012).
- D. A. Bikulov and D. S. Senin, “Implementation of the Lattice Boltzmann Method without Stored Distribution Functions on GPU,” Vychisl. Metody Programm. 14, 370-374 (2013).
- D. A. Bikulov, “An Efficient Implementation of the Lattice Boltzmann Method for Hybrid Supercomputers,” Vychisl. Metody Programm. 16, 205-214 (2015).
- X. He and L.-S. Luo, “A Priori Derivation of the Lattice Boltzmann Equation,” Phys. Rev. E 55 (6), R6333-R6336 (1997).
- G. V. Krivovichev, “Application of the Integro-Interpolation Method to the Construction of Single-Step Lattice Boltzmann Schemes,” Vychisl. Metody Programm. 13, 19-27 (2012).
- P. R. Rao and L. A. Schaefer, “Numerical Stability of Explicit Off-Lattice Boltzmann Schemes: A Comparative Study,” J. Comput. Phys. 285, 251-264 (2015).
- V. Sofonea and R. F. Sekerka, “Viscosity of Finite Difference Lattice Boltzmann Models,” J. Comput. Phys. 184 (2), 422-434 (2003).
- G. V. Krivovichev, “Investigation of the Stability of Explicit Finite Difference-Based Lattice Boltzmann Schemes,” Vychisl. Metody Programm. 13, 332-340 (2012).
- G. V. Krivovichev and S. A. Mikheev, “Stability of Three-Layer Finite Difference-Based Lattice Boltzmann Schemes,” Vychisl. Metody Programm. 15, 211-221 (2014).
- G. V. Krivovichev and S. A. Mikheev, “Stability Study of Finite-Difference-Based Lattice Boltzmann Schemes with Upwind Differences of High Order Approximation,” Vychisl. Metody Programm. 16, 196-204 (2015).
- T. Abe, “Derivation of the Lattice Boltzmann Method by Means of the Discrete Ordinate Method for the Boltzmann Equation,” J. Comput. Phys. 131 (1), 241-246 (1997).
- M. N. Kogan, Rarefied Gas Dynamics (Nauka, Moscow, 1967; Plenum, New York, 1969).
- F. Filbet and G. Russo, “High Order Numerical Methods for the Space Non-Homogeneous Boltzmann Equation, J. Comput. Phys. 186 (2), 457-480 (2003).
- T. Ohwada, “Higher Order Approximation Methods for the Boltzmann Equation,” J. Comput. Phys. 139 (1), 1-14 (1998).
- F. G. Tcheremissine, “Solution of the Boltzmann Kinetic Equation for Low Speed Flows,” Transp. Theory Stat. Phys. 37 (5-7), 564-575 (2008).
- Yu. Yu. Kloss and D. V. Martynov, “Solving the Boltzmann Kinetic Equation Using Tetrahedral Meshes on a Cluster Architecture,” Vychisl. Metody Programm. 13, 90-96 (2012).
- Yu. Yu. Kloss, D. V. Martynov, and F. G. Cheremissine, “A Numerical Method for Analyzing the Knudsen Micropump Characteristics,” Vychisl. Metody Programm. 12, 16-27 (2011).
- E. A. Malkov and M. S. Ivanov, “A Deterministic Particle-In-Cell Method for Solving the Problems of Rarefied Gas Dynamics. Part I,” Vychisl. Metody Programm. 12, 368-374 (2011).
- Z. Guo, C. Zheng, and T. S. Zhao, “A Lattice BGK Scheme with General Propagation,” J. Sci. Comput. 16 (4), 569-585 (2001).
- Z. Guo and T. S. Zhao, “Finite-Difference-Based Lattice Boltzmann Model for Dense Binary Mixtures,” Phys. Rev. E 71, 026701-1-026701-12 (2005).
- J. H. B. Erdembilegt, W. B. Feng, and W. Zhang, “High Velocity Flow Simulation Using Lattice Boltzmann Method with No-Free-Parameter Dissipation Scheme,” J. Shanghai Univ. (Engl. Ed.) 13 (6), 454-461 (2009).
- G. H. R. Kefayati, “FDLBM Simulation of Magnetic Field Effect on Mixed Convection in a Two Sided Lid-Driven Cavity Filled with Non-Newtonian Nanofluid,” Powder Technol. 280, 135-153 (2015).
- G. V. Krivovichev, “Stability of Finite-Difference-Based Lattice Boltzmann Schemes,” Vychisl. Metody Programm. 14, 1-8 (2013).
- R. P. Fedorenko, Introduction to Computational Physics (Intellekt, Dolgoprudnyi, 2008) [in Russian].
- Z. Guo and T. S. Zhao, “Explicit Finite-Difference Lattice Boltzmann Method for Curvilinear Coordinates,” Phys. Rev. E 67, 066709-1-066709-12 (2003).
- V. M. Goloviznin and A. A. Samarskii, “Finite Difference Approximation of Convective Transport Equation with Space Splitting Time Derivative,” Mat. Model. 10 (1), 86-100 (1998).
- V. M. Goloviznin and A. A. Samarskii, “Some Characteristics of Finite Difference Scheme ’Cabaret’,” Mat. Model. 10 (1), 101-116 (1998).
- U. Ghia, K. N. Ghia, C. T. Shin, “High-Re Solutions for Incompressible Flow Using the Navier-Stokes Equations and a Multigrid Method,” J. Comput. Phys. 48, 387-411 (1982).
- G. V. Krivovichev, “A Lattice Boltzmann Scheme for Computing on Unstructured Meshes,” Vychisl. Metody Programm. 14, 524-532 (2013).
- G. V. Krivovichev, “Modification of the Lattice Boltzmann Method for the Computations of Viscid Incompressible Fluid Flows,” Kompyut. Issled. Model. 6 (3), 365-381 (2014).
- Q. Zou and X. He, “On Pressure and Velocity Boundary Conditions for the Lattice Boltzmann BGK Model,” Phys. Fluids 9 (6), 1591-1598 (1997).