DOI: https://doi.org/10.26089/NumMet.v17r327

2D and 3D algorithms of introcontinuation

Authors

  • Yu.V. Glasko

Keywords:

introcontinuation
Berezkin’s complete normalized gradient
finite-difference complete normalized gradient
Dirichlet problem
Laplace equation
Poisson equation
mathematical model
inverse problem

Abstract

The introcontinuation of a potential field for the localization of sources in the field’s anomalies is discussed. A mathematical model of the field is proposed on the basis of the Dirichlet problem with a condition on the day surface. New 2D and 3D algorithms are developed to determine the critical points for the field continued into the lower half-plane. These algorithms are based on a finite-difference approximation of Berezkin’s complete normalized gradient and on the determination of its critical points. Two versions of the finite-difference introcontinuation reduce a priori information requiring for the algorithms. A model experiment for the areal version (3D) procedure is considered to illustrate the determination of objects by the observed gravity field.


Published

2016-07-17

Issue

Section

Section 1. Numerical methods and applications

Author Biography

Yu.V. Glasko


References

  1. I. S. Berezin and N. P. Zhidkov, Computing Methods (Fizmatgiz, Moscow, 1960; Pergamon, Oxford, 1965), Vol. 2.
  2. V. M. Berezkin, Full Gradient Technique in Geophysical Survey (Nedra, Moscow, 1988) [in Russian].
  3. V. M. Berezkin, Yu. V. Zhbankov, V. G. Filatov, et al., Technical Recommendations on Technology of Areal Gravimetric Data Processing and Interpretation (Neftegeofizika, Moscow, 1992) [in Russian].
  4. A. B. Vasil’eva and N. A. Tikhonov, Integral Equations (Mosk. Gos. Univ., Moscow, 1989) [in Russian].
  5. E. A. Mudretsova (Ed.), Gravity Survey. Reference Book (Nedra, Moscow, 1981) [in Russian].
  6. A. A. Nikitin, A. V. Petrov, V. M. Megerya, et al., Optimal Filtration and Intro-Continuation of Geofields Considering Secondary Magneto-Mineral Genesis in the Oil and Gas Exploration (NT Press, Moscow, 2011) [in Russian].
  7. A. A. Samarskii and V. B. Andreev, Difference Methods for Elliptic Equations (Nauka, Moscow, 1976) [in Russian].
  8. A. A. Samarskii and P. N. Vabishchevich, Numerical Methods for Solving Inverse Problems of Mathematical Physics (Editorial, Moscow, 2004; Gruyter, Berlin, 2007).
  9. V. N. Strakhov, “Sweeping of Masses in the Sense of Poincare and Its Application to the Solution of Direct and Inverse Problems of Gravimetry,” Dokl. Akad. Nauk SSSR 236 (1), 54-57 (1977).
  10. V. N. Strakhov, “On the Theory of the Plane Problems of Gravimetry and Magnetometry: the Analytical World Generated by the Poincare’s Balayage,” Izv. Akad. Nauk SSSR, Ser. Fiz. Zemli, No. 2, 47-73 (1978).
  11. A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics (Nauka, Moscow, 1977; Dover, New York, 1990).
  12. A. G. Yagola, Wang Yanfei, I. E. Stepanova, and V. N. Titarenko, Inverse Problems and Methods of Their Solution. Applications to Geophysics (Binom, Moscow, 2014) [in Russian].
  13. V. G. Filatov, Stable Methods for Processing and Interpretation of the Potential Fields Based on the Regularization and Concentration of Sources Doctoral Dissertation in Mathematics and Physics (Inst. Geophys., Kiev, 1988).
  14. Yu. V. Glasko, “The Problem of Concentration of Masses,” Fiz. Zemli, No. 2, 37-43 (2015) [Izv., Phys. Solid Earth 51 (2), 191-196 (2015)].
  15. Yu. V. Glasko, “A Numerical Aspect of the 3.5D Mass Concentration Algorithm,” in Proc. VI Int. Sci. School-Conf. for Young Scientists on Theory and Numerical Methods for Solving Inverse and Ill-Posed Problems, Novosibirsk, Russia, September 15-25, 2014 (Sib. Electron. Mat. Izv., Novosibirsk, 2015), Vol. 12, pp. 197-205.