DOI: https://doi.org/10.26089/NumMet.v17r433

A Cartesian grid method for the numerical modeling of shock wave propagation in domains of complex shape

Authors

  • D.A. Sidorenko
  • P.S. Utkin

Keywords:

mathematical modeling
gas dynamics
shock wave
Godunov method
Cartesian grid method

Abstract

This paper is devoted to the development, software implementation, and quantitative estimation of a numerical algorithm based on the Cartesian grid method for the mathematical modeling of shock wave propagation in domains of complex shape with curvilinear boundaries. A detailed description of an algorithm based on the method of «h-boxes» is given. The efficiency of the algorithm is analyzed on the problems of regular and single Mach reflection of a shock wave from a wedge as well as on the problem of shock wave/cylinder interaction.


Published

2016-08-29

Issue

Section

Section 1. Numerical methods and applications

Author Biographies

D.A. Sidorenko

P.S. Utkin


References

  1. I. V.  Semenov, P. S. Utkin, and V. V. Markov, “Numerical Modeling of Two-Dimensional Flows with Detonation Waves Using High Performance Computing,” Vychisl. Metody Programm. 9, 119-128 (2008).
  2. S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, et al., Numerical Solution of Multidimensional Gas Dynamics Problems (Nauka, Moscow, 1976) [in Russian].
  3. R. Mittal and G. Iaccarino, “Immersed Boundary Methods,” Annu. Rev. Fluid Mech. 2005. 37, 239-261 (2005).
  4. Y. Gorsse, A. Iollo, H. Telib, and L. Weynans, “A Simple Second Order Cartesian Scheme for Compressible Euler Flows,” J. Comput. Phys. 231 (23), 7780-7794 (2012).
  5. F. A. Maksimov, “Supersonic Flow of System of Bodies,” Komp’yut. Issled. Model. 5 (6), 969-980 (2013).
  6. I. S. Menshov and M. A. Kornev, “Free-Boundary Method for the Numerical Solution of Gas-Dynamic Equations in Domains with Varying Geometry,” Mat. Model. 26 (5), 99-112 (2014) [Math. Models Comput. Simul. 6 (6), 612-621 (2014)].
  7. M. J. Berger, C. Helzel, R. J. LeVeque, “h-box Methods for the Approximation of Hyperbolic Conservation Laws on Irregular Grids,” SIAM J. Numer. Anal. 41 (3), 893-918 (2003).
  8. C. Helzel, M. J. Berger, and R. J. LeVeque, “A High-Resolution Rotated Grid Method for Conservation Laws with Embedded Geometries,” SIAM J. Sci. Comput. 25 (3), 785-809 (2005).
  9. M. Berger and C. Helzel, “A Simplified h-box Method for Embedded Boundary Grids,” SIAM J. Sci. Comput. 34 (2), 861-888.
  10. T. Barth and M. Ohlberger, “Finite Volume Methods: Foundation and Analysis,” in Encyclopedia of Computational Mechanics (Wiley, Hoboken, 2004), Vol. 1, pp. 439-470.
  11. E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction (Springer, Heidelberg, 2009).
  12. I. E. Sutherland and G. W. Hodgman, “Reentrant Polygon Clipping,” Commun. ACM 17 (1), 32-42 (1974).
  13. D. W. Levy, K. G. Powell, and B. van Leer, “Use of a Rotated Riemann Solver for the Two-Dimensional Euler Equations,” J. Comput. Phys. 106 (2), 201-214 (1993).
  14. Y.-X. Ren, “A Robust Shock-Capturing Scheme Based on Rotated Riemann Solvers,” Comput. Fluids 32 (10), 1379-1403 (2003).
  15. H. M. Glaz, P. Colella, I. I. Glass, and R. L. Deschambault, “A Numerical Study of Oblique Shock-Wave Reflections with Experimental Comparisons,” Proc. R. Soc. Lond. A 398 (1814), 117-140 (1985).
  16. T. V. Bazhenova and L. G. Gvozdeva, Unsteady Interaction of Shock Waves (Nauka, Moscow, 1977) [in Russian].
  17. D. Drikakis, D. Ofengeim, E. Timofeev, and P. Voionovich, “Computation of Non-Stationary Shock-Wave/Cylinder Interaction Using Adaptive-Grid Methods,” J. Fluid Struct. 11 (6), 665-692 (1997).
  18. K. Takayama and K. Itoh, “Unsteady Drag over Cylinders and Aerofoils in Transonic Shock Tube Flows,” in Proc. 15th Int. Symp. on Shock Waves and Shock Tubes, Berkeley, USA, July 28-August 2, 1985 (Stanford Univ. Press, Stanford, California, 1985), 439-485.
  19. C. T. Crowe (Ed.), Multiphase Flow Handbook (CRC Press, Boca Raton, 2005).
  20. V. A. Levin, V. V.Markov, T. A. Zhuravskaya, and S. F. Osinkin, “Nonlinear Wave Processes That Occur during the Initiation and Propagation of Gaseous Detonation,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 251, 200-214 (2005) [Proc. Steklov Inst. Math. 251, 192-205 (2005)].
  21. A. I. Lopato and P. S. Utkin, “Detailed Simulation of the Pulsating Detonation Wave in the Shock-Attached Frame,” Zh. Vychisl. Mat. Mat. Fiz. 56 (5), 856-868 (2016) [Comput. Math. Math. Phys. 56 (5), 841-853 (2016)].