Implicit and time reversible CABARET schemes for quasilinear shallow water equations
Authors
-
V.M. Goloviznin
-
D.Yu. Gorbachev
-
A.M. Kolokolnikov
-
P.A. Maiorov
-
B.A. Tlepsuk
Keywords:
CABARET scheme
shallow water equations
conservative schemes
time reversible schemes
numerical simulation
Abstract
A new implicit unconditionally stable scheme for the one-dimensional shallow water equations is proposed. This implicit scheme retains all the features of the explicit CABARET (Compact Accurately Boundary Adjusting-REsolution Technique) difference scheme. Dissipative and dispersion properties of this new scheme are analyzed; an algorithm of its numerical solution is discussed. Some examples of solving the Riemann problem are considered.
Section
Section 1. Numerical methods and applications
References
- B. L. Rozhdestvenskii and N. N. Yanenko, Systems of Quasilinear Equations and Their Applications to Gas Dynamics (Nauka, Moscow, 1978; Amer. Math. Soc., Providence, 1982).
- A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems (Fizmatlit, Moscow, 2001; CRC Press, Boca Raton, 2001).
- A. I. Zhukov, “Application of the Method of Characteristics to the Numerical Solution of One-Dimensional Problems in Gas Dynamics,” Tr. Mat. Inst. im. V.A. Steklova, Akad. Nauk SSSR 58 (3), 3-150 (1960).
- K. M. Magomedov and A. S. Kholodov, Grid-Characteristic Numerical Methods (Nauka, Moscow, 1988) [in Russian].
- V. M. Goloviznin, S. A. Karabasov, and I. M. Kobrinskii, “Balance-Characteristic Schemes with Separated Conservative and Flux Variables,” Mat. Model. 15 (9), 29-48 (2003).
- V. M. Goloviznin, M. A. Zaitsev, S. A. Karabasov, and I. A. Korotkin, New CFD Algorithms for Multiprocessor Computer Systems (Mosk. Gos. Univ., Moscow, 2013) [in Russian].
- A. A. Samarskii and Yu. P. Popov, Difference Schemes for Solving Gas Dynamics Problems (Nauka, Moscow, 1992) [in Russian].
- V. M. Goloviznin and A. A. Samarskii, “Finite Difference Approximation of Convective Transport Equation with Space Splitting Time Derivative,” Mat. Model. 10 (1), 86-100 (1998).
- V. M. Goloviznin and A. A. Samarskii, “Some Characteristics of Finite Difference Scheme ’cabaret’,” Mat. Model. 10 (1), 101-116 (1998).
- V. M. Goloviznin, V. A. Isakov, and A. V. Solovjev, “An Approximation Algorithm for Treatment of Sound Points in the CABARET Scheme,” Differ. Uravn. 52 (2016) (in press).
- V. M. Goloviznin and S. A. Karabasov, “Nonlinear Correction of Cabaret Scheme,” Mat. Model. 10 (12), 107-123 (1998).