Blow-up phenomena in the model of a space charge stratification in semiconductors: numerical analysis of original equation reduction to a differential-algebraic system
Authors
-
D.V. Lukyanenko
-
A.A. Panin
Keywords:
numerical diagnostics of solution’s blow-up
Rosenbrock method
partial differential equations
differential-algebraic equations
Abstract
The efficiency of one of the methods for the numerical diagnostics of solution’s blow-up is shown using the example of solving a nonlinear Sobolev-type equation that describes a space charge stratification in semiconductors. An approach to reduce the original partial differential equation to a differential-algebraic system is used. This system is solved by the Rosenbrock scheme with a complex coefficient. The numerical diagnostics of solution’s blow-up is based on the Richardson extrapolation procedure.
Section
Section 1. Numerical methods and applications
References
- E. Mitidieri and S. I. Pokhozhaev, “A Priori Estimates and Blow-up of Solutions to Nonlinear Partial Differential Equations and Inequalities,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 234, 3-383 (2001) [Proc. Steklov Inst. Math. 234, 1-362 (2001)].
- H. A. Levine, “Some Nonexistence and Instability Theorems for Solutions of Formally Parabolic Equations of the Form P𝓊𝓉 = -A𝓊 + ℱ(𝓊),” Arch. Rational Mech. Anal. 51 (5), 371-386 (1973).
- H. A. Levine, “Instability and Nonexistence of Global Solutions to Nonlinear Wave Equations of the Form P𝓊𝓉𝓉 = -A𝓊 + ℱ(𝓊),” Trans. Am. Math. Soc. 192, 1-21 (1974).
- V. K. Kalantarov and O. A. Ladyzhenskaya, “The Occurrence of Collapse for Quasilinear Equations of Parabolic and Hyperbolic Types,” Zap. Nauch. Semin. Leningr. Otd. Mat. Inst. Steklova 69, 77-102 (1977). [J. Math. Sci. 10 (1), 53-70 (1978)].
- A. G. Sveshnikov, A. B. Al’shin, M. O. Korpusov, and Yu. D. Pletner, Linear and Nonlinear Equations of Sobolev Type (Fizmatlit, Moscow, 2007) [in Russian].
- M. O. Korpusov, Blow-up in Nonclassical Wave Equations (Editorial, Moscow, 2010) [in Russian].
- M. O. Korpusov, “Blow-up of Ion Acoustic Waves in a Plasma,” Mat. Sb. 202 (1), 37-64 (2011) [Sb. Math. 202 (1), 35-60 (2011)].
- A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, and A. P. Mikhailov, Blow-up in Quasilinear Parabolic Equations (Nauka, Moscow, 1987; Gruyter, Berlin, 1995).
- V. A. Galaktionov and S. I. Pokhozhaev, “Third-Order Nonlinear Dispersive Equations: Shocks, Rarefaction, and Blowup Waves,” Zh. Vychisl. Mat. Mat. Fiz. 48 (10), 1819-1846 (2008) [Comput. Math. Math. Phys. 48 (10), 1784-1810 (2008)].
- D. E. Pelinovsky and C. Xu, “On Numerical Modelling and the Blow-up Behavior of Contact Lines with a 180° Contact Angle,” J. Eng. Math. 92, 31-44 (2015).
- A. Cangiani, E. H. Georgoulis, I. Kyza, and S. Metcalfe, “Adaptivity and Blow-up Detection for Nonlinear Evolution Problems,” arXiv preprint: 1502.03250v1 [math.NA] (Cornell Univ. Library, Ithaca, 2015), available at
https://arxiv.org/abs/1502.03250/.
- R. Haynes and C. Turner, “A Numerical and Theoretical Study of Blow-up for a System of Ordinary Differential Equations Using the Sundman Transformation,” Atl. Electron. J. Math. 2 (1), 1-13 (2007).
- M. Berger and R. V. Kohn, “A Rescaling Algorithm for the Numerical Calculation of Blowing-up Solutions,” Commun. Pure Appl. Math. 41 (6), 841-863 (1988).
- C.-H. Cho, “Numerical Detection of Blow-up: A New Sufficient Condition for Blow-up,” Japan J. Indust. Appl. Math. 33 (1), 81-98.
- E. A. Alshina, N. N. Kalitkin, and P. V. Koryakin, “Diagnostics of Singularities of Exact Solutions in Computations with Error Control,” Zh. Vychisl. Mat. Mat. Fiz. 45 (10), 1837-1847 (2005) [Comput. Math. Math. Phys. 45 (10), 1769-1779 (2005)].
- N. N. Kalitkin, A. B. Al’shin, E. A. Al’shina, and B. V. Rogov, Calculations on Quasi-Uniform Grids (Fizmatlit, Moscow, 2005) [in Russian].
- A. B. Al’shin and E. A. Al’shina, “Numerical Diagnosis of Blow-up of Solutions of Pseudoparabolic Equations,” J. Math. Sci. 148 (1), 143-162 (2008).
- J. Hoffman and C. Johnson, “Blow up of Incompressible Euler Solutions,” BIT Numer. Math. 48 (2), 285-307 (2008).
- M. O. Korpusov, D. V. Lukyanenko, A. A. Panin, and E. V. Yushkov, “Blow-up Phenomena in the Model of a Space Charge Stratification in Semiconductors: Analytical and Numerical Analysis,” Math. Meth. Appl. Sci., 2016 (in press).
doi 10.1002/mma.4142
- M. O. Korpusov, D. V. Lukyanenko, A. A. Panin, and E. V. Yushkov, “Blow-up for One Sobolev Problem: Theoretical Approach and Numerical Analysis,” J. Math. Anal. Appl. 442 (2), 451-468 (2016).
- A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis (Nauka, Moscow, 1981; Dover, New York, 1999).
- E. Hairer and G. Wanner, Solving Ordinary Differential Equations. Stiff and Differential-Algebraic Problems (Springer, Berlin, 2002).
- N. N. Kalitkin, “Numerical Methods for Solving Stiff Systems,” Mat. Model. 7 (5), 8-11 (1995).
- H. H. Rosenbrock, “Some General Implicit Processes for the Numerical Solution of Differential Equations,” Comput. J. 5 (4), 329-330 (1963).
- A. B. Al’shin, E. A. Al’shina, N. N. Kalitkin, and A. B. Koryagina, “Rosenbrock Schemes with Complex Coefficients for Stiff and Differential Algebraic Systems,” Zh. Vychisl. Mat. Mat. Fiz. 46 (8), 1392-1414 (2006) [Comput. Math. Math. Phys. 46 (8), 1320-1340 (2006)].