Artificial boundary conditions for numerical modeling of electron oscillations in plasma
Authors
-
E.V. Chizhonkov
Keywords:
numerical modeling
plasma oscillations
breaking effect
artificial boundary conditions
Abstract
The behavior of the functions describing the relativistic breaking effect of plane one-dimensional electron plasma oscillations is studied by asymptotic methods. The obtained formulas generate various forms of artificial boundary conditions which analyzed by numerical experiments. A special combination of the proposed boundary conditions is used to simulate the breaking effect in the spatially two-dimensional case. A part of computation was performed on the «Chebyshev» Moscow University supercomputer system.
Section
Section 1. Numerical methods and applications
References
- M. A. Il’gamov and A. N. Gil’manov, Nonreflecting Conditions at Boundaries of the Calculation Region (Fizmatlit, Moscow, 2003) [in Russian].
- Ya. B. Zel’dovich and A. D. Myshkis, Elements of Mathematical Physics (Nauka, Moscow, 1973) [in Russian].
- L. M. Gorbunov, A. A. Frolov, E. V. Chizhonkov, and N. E. Andreev, “Breaking of Nonlinear Cylindrical Plasma Oscillations,” Fiz. Plazmy 36 (4), 375-386 (2010) [Plasma Phys. Rep. 36 (4), 345-356 (2010)].
- J. M. Dawson, “Nonlinear Electron Oscillations in a Cold Plasma,” Phys. Rev. 113 (2), 383-387 (1959).
- E. V. Chizhonkov, A. A. Frolov, and L. M. Gorbunov, “Modelling of Relativistic Cylindrical Oscillations in Plasma,” Russ. J. Numer. Anal. Math. Model. 23 (5), 455-467 (2008).
- L. M. Gorbunov, A. A. Frolov, and E. V. Chizhonkov, “On Modeling of Nonrelativistic Cylindrical Oscillations in Plasma,” Vychisl. Metody Programm. 9, 58-65 (2008).
- A. A. Frolov and E. V. Chizhonkov, “Relativistic Breaking Effect of Electron Oscillations in a Plasma Slab,” Vychisl. Metody Programm. 15, 537-548 (2014).
- B. L. Rozhdestvenskii and N. N. Janenko, Systems of Quasilinear Equations and Their Applications to Gas Dynamics (Nauka, Moscow, 1978; Am. Math. Soc., Providence, 1983).
- N. N. Bogolyubov and Y. A. Mitropol’sky, Asymptotic Methods in the Theory of Non-Linear Oscillations (Nauka, Moscow, 1974; Gordon and Breach, New York, 1961).
- E. V. Chizhonkov, “To the Question of Large-Amplitude Electron Oscillations in a Plasma Slab,” Zh. Vychisl. Mat. Mat. Fiz. 51 (3), 456-469 (2011) [Comput. Math. Math. Phys. 51 (3), 423-434 (2011)].
- N. S. Bakhvalov, A. A. Kornev, and E. V. Chizhonkov, Numerical Methods. Problems and Exercises with Solutions (Laboratory of Knowledge, Moscow, 2016) [in Russian].
- A. V. Popov and E. V. Chizhonkov, “A Finite-Difference Scheme for Computing Axisymmetric Plasma Oscillations,” Vychisl. Metody Programm. 13, 1-13 (2012).
- E. V. Chizhonkov, A. A. Frolov, and S. V. Milyutin, “On Overturn of Two-Dimensional Nonlinear Plasma Oscillations,” Russ. J. Numer. Anal. Math. Model. 30 (4), 213-226 (2015).
- A. F. Alexandrov, L. S. Bogdankevich, and A. A. Rukhadze, Principles of Plasma Electrodynamics (Vysshaya Shkola, Moscow, 1978; Springer, Heidelberg, 1984).
- V. L. Ginzburg and A. A. Rukhadze, Waves in Magnetoactive Plasma (Nauka, Moscow, 1975) [in Russian].
- V. P. Silin, Introduction to the Kinetic Theory of Gases (Nauka, Moscow, 1971) [in Russian].
- V. P. Silin and A. A. Rukhadze, Electromagnetic Properties of Plasma and Plasma-like Media (Librokom, Moscow, 2012; Gordon and Breach, New York, 1965).
- Yu. N. Dnestrovskii and D. P. Kostomarov, Numerical Simulation of Plasmas (Nauka, Moscow, 1982; Springer, Berlin, 1986).
- A. B. Vatazhin, G. A. Lyubimov, and S. A. Regirer, Magnetohydrodynamic Flows in Channels (Nauka, Moscow, 1970) [in Russian].
- A. I. Morozov and L. S. Solov’ev, “Steady-State Plasma Flow in a Magnetic Field,” in Reviews of Plasma Physics (Springer, New York, 1980), Vol. 8, pp. 1-102.
- A. Sh. Abdullaev, Yu. M. Aliev, and A. A. Frolov, “Generation of Quasi-Static Magnetic Fields by Strong Circularly Polarized Electromagnetic Radiation in a Relativistic Magnetoactive Plasma,” Fiz. Plasmy 12 (7), 827-835 (1986).
- E. V. Chizhonkov and A. A. Frolov, “Numerical Simulation of the Breaking Effect in Nonlinear Axially-Symmetric Plasma Oscillations,” Russ. J. Numer. Anal. Math. Model. 26 (4), 379-396 (2011).
- S. V. Milyutin, A. A. Frolov, and E. V. Chizhonkov, “Spatial Modeling of Breaking Effects in Nonlinear Plasma Oscillations,” Vychisl. Metody Programm. 14, 295-305 (2013).