Parallel implementation of a meshfree method for calculating flows of ideal incompressible fluid

Authors

DOI:

https://doi.org/10.26089/NumMet.v18r215

Keywords:

meshfree methods, geophysical flows, inviscid incompressible fluid, vortex dynamics, vortex-in-cell method

Abstract

A parallel algorithm for calculating the two-dimensional dynamics of inviscid incompressible fluids on a rotating sphere is proposed. The algorithm is based on the meshfree vortex-in-cell method for solving an initial boundary value problem for unsteady equations describing the motion of an ideal fluid in terms of the absolute vorticity and stream function. The method is based on the approximation of the stream function using the Fourier series. The vorticity field is defined by its values on a set of particles. The particle trajectories are calculated using a pseudo-symplectic integrator. At each time step, the parallelization involves the splitting into subsets of particles and the decomposition of the flow region. The efficiency of the parallel algorithm and its performance are evaluated experimentally for various parameters of the method. The numerical results show a good scalability of the algorithm.

Author Biography

V.N. Govorukhin

References

  1. A. N. Andrianov and K. N. Efimkin, Approach to Parallel Implementation of the Particles in Cell Method , Preprint No. 9 (Keldysh Institute of Applied Mathematics, Moscow, 2009).
  2. S. R. Grechkin-Pogrebnyakov, K. S. Kuzmina, and I. K. Marchevsky, “An Implementation of Vortex Methods for Modeling 2D Incompressible Flows Using the CUDA Technology,” Vychisl. Metody Programm. 16, 165-176 (2015).
  3. K. W. Myerscough and J. Frank, “Explicit, Parallel Poisson Integration of Point Vortices on the Sphere,” J. Comput. Appl. Math. 2016. 304, 100-119 (2016).
  4. M. Winkel, R. Speck, H. H{ü}bner, et al., “A Massively Parallel, Multi-Disciplinary Barnes-Hut Tree Code for Extreme-Scale N-body Simulations,” Comput. Phys. Commun. 183 (4), 880-889 (2012).
  5. R. M. Schoemaker, P. C. A. de Haas, H. J. H. Clercx, and R. M. M. Mattheij, “A Parallel Hierarchical-Element Method for Contour Dynamics Simulations,” Comput. Fluids 34 (10), 1173-1198 (2005).
  6. E. A. Kuksheva and V. N. Snytnikov, “A Parallel Algorithm for Solving the Gravitational Physics Problems Based on Domain Decomposition,” Vychisl. Metody Programm. 11, 168-175 (2010).
  7. S. M. Belotserkovskii and A. S. Ginevskii, Simulation of Turbulent Jets and Wakes on the Basis of the Discrete Vortex Method (Fizmatlit, Moscow, 1995) [in Russian].
  8. G.-H. Cottet and P. D. Koumoutsakos, Vortex Methods: Theory and Practice (Cambridge University Press, Cambridge, 2000).
  9. O. H. Hald, “Convergence of Vortex Methods for Euler’s Equations. II,” SIAM J. Numer. Anal. 16 (5), 726-755 (1979).
  10. J. T. Beale and A. Majda, “Vortex Methods. II: Higher Order Accuracy in Two and Three Dimensions,” Math. Comput. 39 (159), 29-52 (1982).
  11. C. Anderson and C. Greengard, “On Vortex Methods,” SIAM J. Numer. Anal. 22 (3), 413-440 (1985).
  12. J. Strain, “Fast Adaptive 2D Vortex Methods,” J. Comput. Phys. 132 (1), 108-122 (1997).
  13. G. Ya. Dynnikova, “Fast Technique for Solving the N-Body Problem in Flow Simulation by Vortex Methods,” Zh. Vychisl. Mat. Mat. Fiz. 49 (8), 1458-1465 (2009) [Comput. Math. Math. Phys. 49 (8), 1389-1396 (2009)].
  14. K. S. Kuzmina and I. K. Marchevsky, “On the Estimations of Efficiency and Error of Fast Algorithm in Vortex Element Method,” Tr. Inst. System. Programm., Ross. Akad. Nauk 28 (1), 259-274 (2016).
  15. J. Pedlosky, Geophysical Fluid Dynamics (Springer, New York, 1979; Mir, Moscow, 1984).
  16. V. N. Govorukhin and K. I. Il’in, “Numerical Study of an Inviscid Incompressible Flow through a Channel of Finite Length,” Int. J. Numer. Methods Fluids 60 (12), 1315-1333 (2009).
  17. V. N. Govorukhin, “A Vortex Method for Computing Two-Dimensional Inviscid Incompressible Flows,” Zh. Vychisl. Mat. Mat. Fiz. 51 (6), 1133-1147 (2011) [Comput. Math. Math. Phys. 51 (6), 1061-1073 (2011)].
  18. V. N. Govorukhin, “A Meshfree Method for the Analysis of Planar Flows of Inviscid Fluids,” in Lecture Notes in Computational Science and Engineering (Springer, Heidelberg, 2013), Vol. 89, pp. 171-180.
  19. G. J. F. Van Heijst, “Topography Effects on Vortices in a Rotating Fluid,” Meccanica 29 (4), 431-451 (1994).
  20. F. V. Dolzhanskii, Lectures on Geophysical Fluid Dynamics (Inst. Vychisl. Mat. Ross. Akad. Nauk, Moscow, 2006) [in Russian].
  21. A. Aubry and P. Chartier, “Pseudo-Symplectic Runge-Kutta Methods,” BIT Numer. Math. 38 (3), 439-461 (1998).
  22. V. N. Govorukhin, “On the Choice of a Method for Integrating the Equations of Motion of a Set of Fluid Particles,” Zh. Vychisl. Mat. Mat. Fiz. 54 (4), 697-710 (2014) [Comput. Math. Math. Phys. 54 (4), 706-718 (2014)].
  23. R. W. Hamming, Numerical Methods for Scientists and Engineers (McGraw-Hill, New York, 1973; Nauka, Moscow, 1972).
  24. GCC, the GNU Compiler Collection.
    http://gcc.gnu.org . Cited May 8, 2017.
  25. Microsoft Visual Studio 2012.
    http://www.microsoft.com . Cited May 8, 2017.
  26. C. F. Driscoll and K. S. Fine, “Experiments on Vortex Dynamics in Pure Electron Plasmas,” Phys. Fluids B 2 (6), 1359-1366 (1990).
  27. P. Koumoutsakos, “Inviscid Axisymmetrization of an Elliptical Vortex,” J. Comput. Phys. 138 (2), 821-857 (1997).
  28. O. U. Velasco Fuentes, “Vortex Filamentation: Its Onset and Its Role on Axisymmetrization and Merger,” Dyn. Atmos. Oceans 40 (1-2), 23-42 (2005).

Published

06-05-2017

How to Cite

Говорухин В.Н. Parallel Implementation of a Meshfree Method for Calculating Flows of Ideal Incompressible Fluid // Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie). 2017. 18. 175-186. doi 10.26089/NumMet.v18r215

Issue

Section

Section 1. Numerical methods and applications