A variant of the collocation method for the Fredholm integral equations of the second kind
Keywords:
Fredholm integral equations of the second kind
space of smooth functions
approximate solutions
collocation method
Bernstein polynomials
Abstract
A special variant of the collocation method based on Bernstein polynomials is proposed and theoretically substantiated for the approximate solution of Fredholm integral equations of the second kind in the space of smooth functions.
Section
Section 1. Numerical methods and applications
References
- A. B. Samokhin and A. S. Samokhina, “3D Fredholm Integral Equations for Scattering by Dielectric Structures,” Differ. Uravn. 52 (9), 1221-1230 (2016) [Differ. Equ. 52 (9), 1178-1187 (2016)].
- D. A. Pozharskii, “A Strip Cut in a Composite Elastic Wedge,” Prikl. Mat. Mekh. 80 (4), 489-495 (2016) [J. Appl. Math. Mech. 80 (4), 345-350 (2016)].
- E. Corona, L. Greengard, M. Rachh, and S. Veerapaneni, “An Integral Equation Formulation for Rigid Bodies in Stokes Flow in Three Dimensions,” J. Comput. Phys. 332, 504-519 (2017).
- A. S. Il’inskii and T. N. Galishnikova, “Integral Equations for the Problem on the Diffraction of a Plane Wave on the Interface between Two Half-Spaces with a Local Inhomogeneity of the Interface,” Differ. Uravn. 51 (9), 1220-1226 (2015) [Differ. Equ. 51 (9), 1211-1218 (2015)].
- X.-C. Zhong and Q.-A. Huang, “Approximate Solution of Three-Point Boundary Value Problems for Second-Order Ordinary Differential Equations with Variable Coefficients,” Appl. Math. Comput. 247, 18-29 (2014).
- H. M. Shodja, S. F. Ahmadi, and M. Eskandari, “Boussinesq Indentation of a Transversely Isotropic Half-Space Reinforced by a Buried Inextensible Membrane,” Appl. Math. Model. 38 (7-8), 2163-2172 (2014).
- A. D. Polyanin and A. V. Manzhirov, Handbook of Integral Equations (Fizmatlit, Moscow, 2003; CRC Press, Boca Raton, 2008).
- A. F. Verlan’ and V. S. Sizikov, Integral Equations: Methods, Algorithms, and Programs (Naukova Dumka, Kiev, 1986) [in Russian].
- B. G. Gabdulkhaev, “A Note on the General Theory of Approximate Methods in Analysis,” Uchen. Zap. Kazan. Univ. 125 (2), 18-31 (1965).
- N. S. Gabbasov and I. P. Kasakina, “On the Numerical Solution of Integral Equations of the Second Kind in the Class of Smooth Functions,” in Proc. All-Russian Sci. Conf. on Mathematical Modeling and Boundary Value Problems, Samara, Russia, May 26-28, 2004 (Samara State Tech. Univ., Samara, 2004), Part 3, pp. 48-51.
- S. A. Solov’eva, “On the Solution of Fredholm Integral Equations of the Second Kind,” Nauch.-Tekh. Vestn. Povolzh’ya 1, 37-40 (2014).
- S. A. Solov’eva, “A Special Version of the Moments Method for Integral Fredholm Equations of the Second Kind,” Nauka i Obrazovanie: Nauch. Izd. MGTU im. N.E. Baumana 8, 239-251 (2015).
- B.G. Gabdulkhaev, Optimal Approximations of Solutions of Linear Problems (Kazan Gos. Univ., Kazan, 1980) [in Russian].
- M. F. Kaspshitckaia and N. I. Tukalevskaia, “Concerning the Convergence of the Collocation Method,” Ukrain. Matem. Zh. 19 (4), 48-56 (1967).
- N. S. Gabbasov, “New Variants of the Collocation Method for Integral Equations of the Third Kind,” Mat. Zametki 50 (2), 47-53 (1991) [Math. Notes 50 (2), 802-806 (1991)].
- N. S. Gabbasov, “New Versions of the Collocation Method for a Class of Integrodifferential Equations,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 9, 24-32 (2001) [Russ. Math. 45 (9), 21-29 (2001)].
- N. S. Gabbasov, “New Modifications of the Collocation Method for a Class of Linear Equations with a Hadamard Integral,” Differ. Uravn. 37 (1), 91-96 (2001) [Differ. Equ. 37 (1), 100-106 (2001)].
- N. S. Gabbasov and S. A. Solov’eva, “Special Versions of the Collocation Method for a Class of Integral Equations of the Third Kind,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 8, 27-33 (2012) [Russ. Math. 56 (8), 22-27 (2012)].
- N. S. Gabbasov, “The Collocation Method for Solving Integral Equations of the First Kind in the Class of Generalized Functions,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 2, 12-20 (1993) [Russ. Math. 37 (2), 10-18 (1993)].
- I. P. Natanson, Constructive Function Theory (Gostekhizdat, Leningrad, 1949; Ungar, New York, 1964).