A variant of the collocation method for the Fredholm integral equations of the second kind

Authors

  • S.A. Solovyeva Kazan Federal University - Naberezhnye Chelny Institute

DOI:

https://doi.org/10.26089/NumMet.v18r216

Keywords:

Fredholm integral equations of the second kind, space of smooth functions, approximate solutions, collocation method, Bernstein polynomials

Abstract

A special variant of the collocation method based on Bernstein polynomials is proposed and theoretically substantiated for the approximate solution of Fredholm integral equations of the second kind in the space of smooth functions.

Author Biography

S.A. Solovyeva

References

  1. A. B. Samokhin and A. S. Samokhina, “3D Fredholm Integral Equations for Scattering by Dielectric Structures,” Differ. Uravn. 52 (9), 1221-1230 (2016) [Differ. Equ. 52 (9), 1178-1187 (2016)].
  2. D. A. Pozharskii, “A Strip Cut in a Composite Elastic Wedge,” Prikl. Mat. Mekh. 80 (4), 489-495 (2016) [J. Appl. Math. Mech. 80 (4), 345-350 (2016)].
  3. E. Corona, L. Greengard, M. Rachh, and S. Veerapaneni, “An Integral Equation Formulation for Rigid Bodies in Stokes Flow in Three Dimensions,” J. Comput. Phys. 332, 504-519 (2017).
  4. A. S. Il’inskii and T. N. Galishnikova, “Integral Equations for the Problem on the Diffraction of a Plane Wave on the Interface between Two Half-Spaces with a Local Inhomogeneity of the Interface,” Differ. Uravn. 51 (9), 1220-1226 (2015) [Differ. Equ. 51 (9), 1211-1218 (2015)].
  5. X.-C. Zhong and Q.-A. Huang, “Approximate Solution of Three-Point Boundary Value Problems for Second-Order Ordinary Differential Equations with Variable Coefficients,” Appl. Math. Comput. 247, 18-29 (2014).
  6. H. M. Shodja, S. F. Ahmadi, and M. Eskandari, “Boussinesq Indentation of a Transversely Isotropic Half-Space Reinforced by a Buried Inextensible Membrane,” Appl. Math. Model. 38 (7-8), 2163-2172 (2014).
  7. A. D. Polyanin and A. V. Manzhirov, Handbook of Integral Equations (Fizmatlit, Moscow, 2003; CRC Press, Boca Raton, 2008).
  8. A. F. Verlan’ and V. S. Sizikov, Integral Equations: Methods, Algorithms, and Programs (Naukova Dumka, Kiev, 1986) [in Russian].
  9. B. G. Gabdulkhaev, “A Note on the General Theory of Approximate Methods in Analysis,” Uchen. Zap. Kazan. Univ. 125 (2), 18-31 (1965).
  10. N. S. Gabbasov and I. P. Kasakina, “On the Numerical Solution of Integral Equations of the Second Kind in the Class of Smooth Functions,” in Proc. All-Russian Sci. Conf. on Mathematical Modeling and Boundary Value Problems, Samara, Russia, May 26-28, 2004 (Samara State Tech. Univ., Samara, 2004), Part 3, pp. 48-51.
  11. S. A. Solov’eva, “On the Solution of Fredholm Integral Equations of the Second Kind,” Nauch.-Tekh. Vestn. Povolzh’ya 1, 37-40 (2014).
  12. S. A. Solov’eva, “A Special Version of the Moments Method for Integral Fredholm Equations of the Second Kind,” Nauka i Obrazovanie: Nauch. Izd. MGTU im. N.E. Baumana 8, 239-251 (2015).
  13. B.G. Gabdulkhaev, Optimal Approximations of Solutions of Linear Problems (Kazan Gos. Univ., Kazan, 1980) [in Russian].
  14. M. F. Kaspshitckaia and N. I. Tukalevskaia, “Concerning the Convergence of the Collocation Method,” Ukrain. Matem. Zh. 19 (4), 48-56 (1967).
  15. N. S. Gabbasov, “New Variants of the Collocation Method for Integral Equations of the Third Kind,” Mat. Zametki 50 (2), 47-53 (1991) [Math. Notes 50 (2), 802-806 (1991)].
  16. N. S. Gabbasov, “New Versions of the Collocation Method for a Class of Integrodifferential Equations,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 9, 24-32 (2001) [Russ. Math. 45 (9), 21-29 (2001)].
  17. N. S. Gabbasov, “New Modifications of the Collocation Method for a Class of Linear Equations with a Hadamard Integral,” Differ. Uravn. 37 (1), 91-96 (2001) [Differ. Equ. 37 (1), 100-106 (2001)].
  18. N. S. Gabbasov and S. A. Solov’eva, “Special Versions of the Collocation Method for a Class of Integral Equations of the Third Kind,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 8, 27-33 (2012) [Russ. Math. 56 (8), 22-27 (2012)].
  19. N. S. Gabbasov, “The Collocation Method for Solving Integral Equations of the First Kind in the Class of Generalized Functions,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 2, 12-20 (1993) [Russ. Math. 37 (2), 10-18 (1993)].
  20. I. P. Natanson, Constructive Function Theory (Gostekhizdat, Leningrad, 1949; Ungar, New York, 1964).

Published

14-05-2017

How to Cite

Соловьева С.А. A Variant of the Collocation Method for the Fredholm Integral Equations of the Second Kind // Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie). 2017. 18. 187-191. doi 10.26089/NumMet.v18r216

Issue

Section

Section 1. Numerical methods and applications