Optimization algorithms for facet models and methods of their network transfer
Keywords:
фасетчатые модели
геометрическая оптимизация
трафик передачи данных
итерационные алгоритмы
алгоритм кластеризации вершин
триангуляция
Abstract
In this paper we describe some methods of geometric optimization for facet models. Algorithms with different degrees of speed-in-action and quality of end results are considered. A method for transferring 3D models through network with a given accuracy and a smooth level of detailing is discussed. The structure of progressive meshes is analyzed. The algorithms considered in this paper are compared qualitatively.
Section
Section 1. Numerical methods and applications
References
- Hoppe H., DeRose T., Duchamp T., McDonald J., and Stuetzle W. Mesh optimization // SIGGRAPH 93. 1993. 19-26.
- Hoppe H. Progressive meshes // SIGGRAPH 96. 1996. 99-108.
- Turk G. Re-tiling polygonal surfaces // SIGGRAPH 92. 1992. 55-64.
- Shroeder W., Zarge J., and Lorensen W. Decimation of triangle meshes // SIGGRAPH 92. 1992. 65-70.
- Rossignac J. Geometric simplification and compression // GVU Center and College of Computing Georgia Institute of Technology. SIGGRAPH 97. 1997. 74-81.
- Rossignac J., Borrel P. Multi-resolution 3D approximations for rendering complex scenes // Geometric Modeling in Computer Graphics, Springer Verlag. Eds. B. Falcidieno and T.L. Kunii. Genova, Italy. June 28-July 2, 1993. 455-465
- Low K-L., Tan T-S. Model simplification using vertex-clustering (to appear).
- Warren J. Barycentrie coordinates for convex polytopes // Departament of Computer Science, Rice University, 1996.
- Golub G. and Van Loan C. Matrix Computations. Baltimore: John Hopkins University Press, 1989.