Validation of the recrossing-algorithms for the numerical simulations of multichannel electronic transitions to the degenerate states of an acceptor
Authors
-
S.V. Feskov
Keywords:
Brownian simulation
recrossing-algorithm
electron transfer
donor-acceptor systems
nonequi-librium photoreactions
Abstract
The multichannel electron transfer from the donor compound of a molecular system to a set of the degenerate states of an acceptor is considered within the Zusman-Bixon-Jortner model. An expression for the probability of transition to each of the acceptor states from the delta-localized state on the donor is obtained using the Green’s function technique. Correctness of two recrossing-type numerical algorithms is analyzed by comparing the expected frequencies of transitions to different product states with the calculated probabilities. The numerical schemes are tested using the QM2L software package.
Section
Section 1. Numerical methods and applications
References
- R. A. Marcus and N. Sutin, “Electron Transfers in Chemistry and Biology,” Biochim. Biophys. Acta 811 (3), 265-322 (1985).
- J. Blumberger, “Recent Advances in the Theory and Molecular Simulation of Biological Electron Transfer Reactions,” Chem. Rev. 115 (20), 11191-11238 (2015).
- L. D. Zusman, “The Theory of Electron Transfer Reactions in Solvents with Two Characteristic Relaxation Times,” Chem. Phys. 119 (1), 51-61 (1988).
- M. Bixon and J. Jortner, “Electron Transfer - from Isolated Molecules to Biomolecules,” in Advances in Chemical Physics (Wiley, New York, 1999), Part 1, Vol. 106, pp. 35-202.
- S. V. Feskov, V. N. Ionkin, A. I. Ivanov, et al., “Solvent and Spectral Effects in the Ultrafast Charge Recombination Dynamics of Excited Donor-Acceptor Complexes,” J. Phys. Chem. A 112 (4), 594-601 (2008).
- V. N. Ionkin and A. I. Ivanov, “Independence of the Rate of the Hot Charge Recombination in Excited Donor-Acceptor Complexes from the Spectral Density of High-Frequency Vibrations,” Chem. Phys. 360 (1-3), 137-140 (2009).
- S. V. Feskov, A. O. Kichigina, and A. I. Ivanov, “Kinetics of Nonequilibrium Electron Transfer in Photoexcited Ruthenium(II)-Cobalt(III) Complexes,” J. Phys. Chem. A 115 (9), 1462-1471 (2011).
- A. E. Nazarov, V. Yu. Barykov, and A. I. Ivanov, “Effect of Intramolecular High-Frequency Vibrational Mode Excitation on Ultrafast Photoinduced Charge Transfer and Charge Recombination Kinetics,” J. Phys. Chem. B 120 (12), 3196-3205 (2016).
- R. G. Fedunov, S. V. Feskov, A. I. Ivanov, et al., “Effect of the Excitation Pulse Carrier Frequency on the Ultrafast Charge Recombination Dynamics of Donor-Acceptor Complexes: Stochastic Simulations and Experiments,” J. Chem. Phys. 121 (8), 3643-3656 (2004).
- V. Gladkikh, A. I. Burshtein, S. V. Feskov, et al., “Hot Recombination of Photogenerated Ion Pairs,” J. Chem. Phys. 2005. 123 (2005).
doi 10.1063/1.2140279
- S. V. Feskov, A. I. Ivanov, and A. I. Burshtein, “Integral Encounter Theory of Strong Electron Transfer,” J. Chem. Phys. 122 (2005).
doi 10.1063/1.1871935
- S. V. Feskov, “Brownian Simulation of Electron Transfer Dynamics,” Vychisl. Metody Programm. 10, 202-210 (2009).
- S. V. Bazlov, S. V. Feskov, and A. I. Ivanov, “Effectiveness of Charge Separation from the Long-Lived Second Excited State of Donors,” Khim. Fiz. 36 (3), 39-46 (2017) [Russ. J. Phys. Chem. B 11 (2), 242-248 (2017)].
- S. V. Feskov, “Sink-Algorithms for the Simulation of Electron Transfer Kinetics,” Vychisl. Metody Programm. 13, 471-478 (2012).
- A. F. Voter, “Introduction to the Kinetic Monte Carlo Method,” in Radiation Effects in Solids (Springer, Dordrecht, 2007), Vol. 235, pp. 1-23.
- A. E. Nazarov, R. G. Fedunov, A. I. Ivanov, “Principals of Simulation of Ultrafast Charge Transfer in Solution within the Multichannel Stochastic Point-Transition Model,” Comput. Phys. Commun. 210, 172-180 (2017).
- O. Nicolet and E. Vauthey, “Ultrafast Nonequilibrium Charge Recombination Dynamics of Excited Donor-Acceptor Complexes,” J. Phys. Chem. A 106 (23), 5553-5562 (2002).
- A. I. Ivanov and V. V. Potovoi, “Theory of Non-Thermal Electron Transfer,” Chem. Phys. 247 (2), 245-259 (1999).