DOI: https://doi.org/10.26089/NumMet.v18r429

Specific features of mathematical modeling of flows with detonation waves on unstructured computational grids

Authors

  • A.I. Lopato
  • P.S. Utkin

Keywords:

mathematical modeling
detonation wave
unstructured grids with triangular computational cells
detonation cell

Abstract

A mathematical model and a numerical algorithm for the mathematical modeling of two-dimensional flows with detonation waves on fully unstructured computational grids with triangular cells are proposed. The problem concerning the formation of cellular detonation in a plane channel in the case of stable detonation for different grid resolutions and with the use of first and second order schemes is considered.


Published

2017-08-30

Issue

Section

Section 1. Numerical methods and applications

Author Biographies

A.I. Lopato

P.S. Utkin


References

  1. S. Taki and T. Fujiwara, “Numerical Analysis of Two-Dimensional Nonsteady Detonations,” AIAA J. 16 (1), 73-77 (1978).
  2. V. V. Markov, “Numerical Simulation of the Formation of a Multifrontal Detonation-Wave Structure,” Dokl. Akad. Nauk SSSR 258 (2), 314-317 (1981) [Sov. Phys. Dokl. 26 (2), 503-506 (1981)].
  3. A. J. Higgins, “Approaching Detonation Dynamics as an Ensemble of Interacting Waves,” in Proc. 25th Int. Conf. on the Dynamics of Explosions and Reactive Systems (ICDERS), Leeds, UK, August 2-7, 2015 , Paper PL3.
  4. I. Semenov, P. Utkin, and I. Akhmedyanov, “Mathematical Modeling of Detonation Initiation via Flow Cumulation Effects,” in Progress in Propulsion Physics , Vol. 8, pp. 389-406 (2016).
    doi 10.1051/eucass/201608389
  5. I. V. Semenov, P. S. Utkin, and V. V. Markov, “Numerical Modeling of Two-Dimensional Flows with Detonation Waves Using High Performance Computing,” Vychisl. Metody Programm. 9, 119-128 (2008).
  6. V. A. Levin, I. S. Manuilovich, and V. V. Markov, “Initiation and Propagation of Multidimensional Detonation Waves,” Fiz. Goreniya Vzryva 51 (1), 47-56 (2015) [Combust., Expl., Shock Waves 51 (1), 36-44 (2015)].
  7. A. V. Dubrovskii, V. S. Ivanov, A. E. Zangiev, and S. M. Frolov, “Three-Dimensional Numerical Simulation of the Characteristics of a Ramjet Power Plant with a Continuous-Detonation Combustor in Supersonic Flight,” Khim. Fiz. 35 (6), 49-63 (2016) [Russ. J. Phys. Chem. B 10 (3), 469-482 (2016)].
  8. C. Hu and C.-W. Shu, “Weighted Essentially Non-Oscillatory Schemes on Triangular Meshes,” J. Comput. Phys. 150 (1), 97-127 (1999).
  9. L.F. Figueira da Silva, J. L. F. Azevedo, and H. Korzenowski, “Unstructured Adaptive Grid Flow Simulations of Inert and Reactive Gas Mixtures,” J. Comput. Phys. 160 (2), 522-540 (2000).
  10. F. Togashi, R. Löhner, and N. Tsuboi, “Numerical Simulation of H2/Air Detonation Using Unstructured Mesh,” Shock Waves 19 (2), 151-162 (2009).
  11. H. Shen and M. Parsani, “The Role of Multidimensional Instabilities in Direct Initiation of Gaseous Detonations in Free Space,” J. Fluid Mech. 813 (2017).
    doi 10.1017/jfm.2017.5
  12. A. I. Lopato and P. S. Utkin, “Mathematical Modeling of Pulsating Detonation Wave Using ENO-Schemes of Different Approximation Orders,” Komput. Issled. Model. 6 (5), 643-653 (2014).
  13. J. J. Erpenbeck, “Stability of Steady-State Equilibrium Detonations,” Phys. Fluids 5 (5), 604-614 (1962).
  14. J. H. S. Lee, The Detonation Phenomenon (Cambridge University Press, Cambridge, 2008).
  15. R. Semenko, L. M. Faria, A. R. Kasimov, and B. S. Ermolaev, “Set-Valued Solutions for Non-Ideal Detonation,” Shock Waves 26 (2), 141-160 (2016).
  16. A. R. Kasimov and D. S. Stewart, “On the Dynamics of Self-Sustained One-Dimensional Detonations: A Numerical Study in the Shock-Attached Frame,” Phys. Fluids 16 (10), 3566-3578 (2004).
  17. A. I. Lopato and P. S. Utkin, “Detailed Simulation of the Pulsating Detonation Wave in the Shock-Attached Frame,” Zh. Vychisl. Mat. Mat. Fiz. 56 (5), 856-868 (2016) [Comput. Math. Math. Phys. 56 (5), 841-853 (2019)].
  18. E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction (Springer, Berlin, 2009).
  19. M.-S. Liou and C. J. Steffen, “A New Flux Splitting Scheme,” J. Comput. Phys. 107 (1), 23-39 (1993).
  20. G. Chen, H. Tang, and P. Zhang, “Second-Order Accurate Godunov Scheme for Multicomponent Flows on Moving Triangular Meshes,” J. Sci. Comput. 34 (1), 64-86 (2008).
  21. A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems (Fizmatlit, Moscow, 2001; CRC Press, Boca Raton, 2001).
  22. B. van Leer, “Towards the Ultimate Conservative Difference Schemes, V. A Second-Order Sequel to Godunov’s Method,” J. Comput. Phys. 32, 101-136 (1979).
  23. C.-W. Shu and S. Osher, “Efficient Implementation of Essentially Non-Oscillatory Shock-Capturing Schemes,” J. Comput. Phys. 77 (2), 439-471 (1988).
  24. D. J. Mavriplis, Solution of the Two-Dimensional Euler Equations on Unstructured Triangular Meshes , PhD Thesis (Princeton Univ., Princeton, 1987).
  25. Y. Mahmoudi and K. Mazaheri, “High Resolution Numerical Simulation of the Structure of 2-D Gaseous Detonations,” Proc. Combust. Inst. 33 (2), 2187-2194 (2011).
  26. V. V. Mitrofanov, Detonation of Homogeneous and Heterogeneous Systems (Lavrentyev Inst. Hydrodynamics, Novosibirsk, 2003) [in Russian].
  27. VisIt.
    https://wci.llnl.gov/simulation/computer-codes/visit/. Cited October 6, 2017.
  28. V. N. Gamezo, D. Desbordes, and E. S. Oran, “Two-Dimensional Reactive Flow Dynamics in Cellular Detonation Waves,” Shock Waves 9 (1), 11-17 (1999).