A method for solving inverse problems of inelastic deformation of thin-walled panels


  • K.S. Bormotin


inverse forming problems
variational inequalities
sufficient uniqueness conditions
iterative methods
finite element method


A mathematical model for inverse problems of forming thin-walled panels is described. The model takes into account the plastic and creep deformations and allows one to describe various technological processes. An iterative method for solving inverse problems of forming is proposed. Its convergence is proved under the conditions dependent on the parameters of processes. The numerical solutions of inverse problems obtained by the finite element method are in good agreement with the conditions of convergence.





Section 1. Numerical methods and applications

Author Biography

K.S. Bormotin


  1. T. Adachi, S. Kimura, T. Nagayama, et. al., “Age Forming Technology for Aircraft Wing Skin,” Mater. Forum 28, 202-207 (2004).
  2. L. H. Zhan, S. G. Tan, M. H. Huang, and J. Niu, “Creep Age-Forming Experiment and Springback Prediction for AA2524,” Adv. Mater. Res. 457-458}, 122-129 (2012).
  3. L. Zhan, J. Lin, and M. Huang, “Study on Springback Behavior in Creep Age Forming of Aluminium Sheets,” Adv. Sci. Lett. 19 (1), 75-79 (2013).
  4. B. D. Annin, A. I. Oleinikov, and K. S. Bormotin, “Modeling of Forming of Wing Panels of the SSJ-100 Aircraft,” Zh. Prikl. Mekh. Tekh. Fiz. 51 (4), 155-165 (2010) [J. Appl. Mech. Tech. Phys. 51 (4), 579-589 (2010)].
  5. I. A. Banshchikova, B. V. Gorev, and I. V. Sukhorukov, “Two-Dimensional Problems of Beam Forming under Conditions of Creep,” Zh. Prikl. Mekh. Tekh. Fiz. 43 (3), 129-139 (2002) [J. Appl. Mech. Tech. Phys. 43 (3), 448-456 (2002)].
  6. I. Yu. Tsvelodub, A Stability Postulate and Its Applications in the Theory of Creep for Metallic Materials (Hydrodynamics Inst., Novosibirsk, 1991) [in Russian].
  7. I. Yu. Tsvelodub, “Inverse Problems of Inelastic Deformation,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 2, 81-92 (1995).
  8. K. S. Bormotin, “An Iterative Method for the Solution of Inverse Shaping Problems under Creep Conditions,” Vychisl. Metody Programm. 14, 141-148 (2013).
  9. K. S. Bormotin, “Iterative Method for Solving Geometrically Nonlinear Inverse Problems of Structural Element Shaping under Creep Conditions,” Zh. Vychisl. Mat. Mat. Fiz. 53 (12), 2091-2099 (2013) [Comput. Math. Math. Phys. 53 (12), 1908-1915 (2013)].
  10. K. S. Bormotin and V. S. Logvina, “A Method of Iterative Regularization for Solving Inverse Problems of Forming Structural Components,” Vychisl. Metody Programm. 15, 77-84 (2014).
  11. K. S. Bormotin, “Numerical Modeling of a Problem Forming with Contact Conditions in a Plasticity and Creep Mode,” Naukovedenie, No. 1, 1-13 (2014).
  12. F. P. Vasil’ev, Methods of Optimization (Faktorial Press, Moscow, 2002) [in Russian].
  13. R. Hill, “On Uniqueness and Stability in the Theory of Finite Elastic Strain,” J. Mech. Phys. Solids 5 (4), 229-241 (1957).
  14. S. N. Korobeinikov, Nonlinear Deformation of Solids (Izd. Ross. Akad. Nauk, Novosibirsk, 2000) [in Russian].
  15. V. D. Klyushnikov, Physico-Mathematical Principles of Strength and Plasticity (Mosk. Gos. Univ., Moscow, 1994) [in Russian].
  16. O. A. Oleinik, G. A. Iosif’yan, and A. S. Shamaev, Mathematical Problems in the Theory of Strongly Inhomogeneous Elastic Media (Mosk. Gos. Univ., Moscow, 1990) [in Russian].
  17. V. P. Mikhailov, Partial Differential Equations (Nauka, Moscow, 1976; Mir, Moscow, 1978).
  18. P. Wriggers, Computational Contact Mechanics (Springer, Berlin, 2006).
  19. K.-J. Bathe, Finite Element Procedures (Prentice Hall, Upper Saddle River, 1982).
  20. S. N. Korobeynikov, A. I. Oleinikov, B. V. Gorev, and K. S. Bormotin, “Mathematical Simulation of Creep Processes in Metal Patterns Made of Materials with Different Extension Compression Properties,” Vychisl. Metody Programm. 9, 346-365 (2008).
  21. V. P. Radchenko and M. N. Saushkin, Creep and Relaxation of Residual Stresses in Hardened Structures (Mashinostroenie, Moscow, 2005) [in Russian].