Ring statistics in disordered solids: a parallel algorithm for clusters with hundred thousands of atoms





structures of glasses and films, molecular dynamics, glassy silicon dioxide, ring statistic


The rings consisting of various number of atoms are basic structural elements in many disordered solids. In this paper, a parallel algorithm for calculating an approximate ring distribution function by the number of atoms is proposed. The algorithm is based on the Monte Carlo method and is applied to SiO$_2$ clusters consisting of up to $10^6$ atoms. The efficiency of the algorithm is studied using up to 1024 computational cores.

Author Biographies

F.V. Grigoriev

Lomonosov Moscow State University
• Leading Researcher

V.B. Sulimov

Lomonosov Moscow State University
• Head of Laboratory

A.V. Tikhonravov


  1. S. Kohara, J. Akola, H. Morita, et al., “Relationship between Topological Order and Glass Forming Ability in Densely Packed Enstatite and Forsterite Composition Glasses,” Proc. Natl. Acad. Sci. USA 108 (36), 14780-14785 (2011).
  2. A. Zeidler, K. Wezka, R. F. Rowlands, et al., “High-Pressure Transformation of SiO_2 Glass from a Tetrahedral to an Octahedral Network: A Joint Approach Using Neutron Diffraction and Molecular Dynamics,” Phys. Rev. Lett. 113, 135501-1-135501-5 (2014).
  3. J. P. Rino, I. Ebbsjö, R. K. Kalia, et al., “Structure of Rings in Vitreous SiO_2,” Phys. Rev. B 47 (6), 3053-3062 (1993).
  4. X. Yuan and A. N. Cormack, “Efficient Algorithm for Primitive Ring Statistics in Topological Networks,” Comp. Mater. Sci. 24 (3), 343-360 (2002).
  5. F. V. Grigoriev, A. V. Sulimov, I. Kochikov, et al., “High-Performance Atomistic Modeling of Optical Thin Films Deposited by Energetic Processes,” Int. J. High Perf. Comp. Appl. 29} (2), 184-192 (2015).
  6. S. V. King, “Ring Configurations in a Random Network Model of Vitreous Silica,” Nature 213, 1112-1113 (1967).
  7. W. Jin, R. K. Kalia, P. Vashishta, and J. P. Rino, “Structural Transformation in Densified Silica Glass: A Molecular-Dynamics Study,” Phys. Rev. B 50 (1), 118-131 (1994).
  8. S. Nosé, “A Unified Formulation of the Constant Temperature Molecular Dynamics Methods,” J. Chem. Phys. 81 (1), 511-519 (1984).
  9. F. V. Grigoriev, A. V. Sulimov, E. V. Katkova, et al., “Full-Atomistic Nanoscale Modeling of the Ion Beam Sputtering Deposition of SiO{}_2 Thin Films,” J. Non-Cr. Sol. 448, 1-5 (2016).
  10. S. Munetoh, T. Motooka, K. Moriguchi, and A. Shintani, “Interatomic Potential for Si-O Systems Using Tersoff Parameterization,” Comp. Mater. Sci. 39 (2), 334-339 (2007).
  11. S. Le Roux and P. Jund, “Ring Statistics Analysis of Topological Networks: New Approach and Application to Amorphous GeS_2 and SiO_2 Systems,” Comp. Mater. Sci. 49 (1), 70-83 (2010).
  12. H. K. Pulker, “Film Deposition Methods,” in Optical Interference Coatings (Springer, Berlin, 2003), pp. 131-153.



How to Cite

Григорьев Ф., Сулимов В., Тихонравов А. Ring Statistics in Disordered Solids: A Parallel Algorithm for Clusters With Hundred Thousands of Atoms // Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie). 2017. 18. 447-454. doi 10.26089/NumMet.v18r437



Section 1. Numerical methods and applications

Most read articles by the same author(s)

1 2 3 > >>