Surface relaxation effect on nuclear magnetic resonance flow propagators

Authors

  • K.L. Klimenok Moscow Institute of Physics and Technology
  • A.Yu. Demianov Schlumberger Moscow Research Center
  • O.Yu. Dinariev Schlumberger Moscow Research Center

DOI:

https://doi.org/10.26089/NumMet.v19r110

Keywords:

numerical simulation, nuclear magnetic resonance, flow propagator, passive admixture transport, surface relaxation

Abstract

This paper is devoted to the development of the approach proposed earlier by the authors to the numerical simulation of nuclear magnetic resonance flow propagators in porous media. The agreement between the flow propagator and the admixture relative dispersion is discussed in detail and a theoretical conclusion on this fact is given. The conditions under which this conclusion is valid are also discussed. It is shown that the laboratory experiments do not take into account them because of relaxation processes in fluids. The influence of these processes is shown by numerical simulation. A method for the surface relaxivity effect estimation is developed.

Author Biographies

K.L. Klimenok

A.Yu. Demianov

Schlumberger Moscow Research Center
• Senior Researcher

O.Yu. Dinariev

Schlumberger Moscow Research Center
• Leading Researcher

References

  1. K. L. Klimenok and A. Yu. Demianov, “Numerical Simulation of Nuclear Magnetic Resonance in Saturated Porous Media with Consideration of Phase Motion,” Vychisl. Metody Programm. 18, 192-203 (2017).
  2. C. P. Slichter, Principles of Magnetic Resonance (Springer, Heidelberg, 1990), Vol. 1.
  3. A. P. Lehoux, S. Rodts, P. Faure, et al., “Magnetic Resonance Imaging Measurements Evidence Weak Dispersion in Homogeneous Porous Media,” Phys. Rev. E 94 (2016).
    doi 10.1103/PhysRevE.94.053107
  4. E. O. Stejskal and J. E. Tanner, “Spin Diffusion Measurements: Spin Echoes in the Presence of a Time-Dependent Field Gradient,” J. Chem. Phys. 42 (1), 288-292 (1965).
  5. K. J. Packer, S. Stapf, J. J. Tessier, and R. A. Damion, “The Characterisation of Fluid Transport in Porous Solids by Means of Pulsed Magnetic Field Gradient NMR,” Magn. Reson. Imaging 16 (5-6), 463-469 (1998).
  6. U. M. Scheven, D. Verganelakis, R. Harris, et al., “Quantitative Nuclear Magnetic Resonance Measurements of Preasymptotic Dispersion in Flow through Porous Media,” Phys. Fluids 17 (2005).
    doi 10.1063/1.2131871
  7. J. Mitchell, D. A. Graf von der Schulenburg, D. J. Holland, et al., “Determining NMR Flow Propagator Moments in Porous Rocks without the Influence of Relaxation,” J. Magn. Reson. 193 (2), 218-225 (2008).
  8. J. Yang, J. Crawshaw, and E. S. Boek, “Quantitative Determination of Molecular Propagator Distributions for Solute Transport in Homogeneous and Heterogeneous Porous Media Using Lattice Boltzmann Simulations,” Water Resour. Res. 49 (12), 8531-8538 (2013).
  9. J. Yang and E. S. Boek, “Pore Scale Simulation of Flow in Porous Media Using the Lattice-Boltzmann Method,” in Proc. SPE Annual Tech. Conf. and Exhibition, Denver, USA, October 30-November 2, 2011 (SPE Press, Richardson, 2011), pp. 1-13.
  10. D. S. Grebenkov, “A Fast Random Walk Algorithm for Computing the Pulsed-Gradient Spin-Echo Signal in Multiscale Porous Media,” J. Magn. Reson. 208 (2), 243-255 (2011).
  11. M. Ferrari, J.-P. Mérel, S. Leclerc, et al., “Study of Dispersion by NMR: Comparison between NMR Measurements and Stochastic Simulation,” Diffus. Fundam. 18 (11), 1-4 (2013).
  12. H. C. Torrey, “Bloch Equations with Diffusion Terms,” Phys. Rev. 104 (3), 563-565 (1956).
  13. K. R. Brownstein and C. E. Tarr, “Spin-Lattice Relaxation in a System Governed by Diffusion,” J. Magn. Reson. 26 (1), 17-24 (1977).
  14. K. R. Brownstein and C. E. Tarr, “Importance of Classical Diffusion in NMR Studies of Water in Biological Cells,” Phys. Rev. A 19 (6), 2446-2453 (1979).
  15. A. Yu. Dem’yanov, O. Yu. Dinariev, and N. V. Evseev, Foundations of the Density Functional Method in Hydrodynamics (Fizmatlit, Moscow, 2009) [in Russian].
  16. R. W. MacCormack, “A Numerical Method for Solving the Equations of Compressible Viscous Flow,” AIAA J. 20 (9), 1275-1281 (1982).
  17. S. V. Patankar, Numerical Heat Transfer and Fluid Flow: Computational Methods in Mechanics and Thermal Science (CRC Press, Boca Raton, 1980).
  18. A. M. Perepukhov, O. V. Kishenkov, S. V. Gudenko, et al., “NMR Studies of Pore Space in Silicates and {}^1H Relaxation of Liquids in Porous Media,” Trudy Mosk. Inst. Phiz. Tekhnol. 5 (3), 154-163 (2013).

Published

23-03-2018

How to Cite

Клименок К.Л., Демьянов А.Ю., Динариев О.Ю. Surface Relaxation Effect on Nuclear Magnetic Resonance Flow Propagators // Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie). 2018. 19. 112-120. doi 10.26089/NumMet.v19r110

Issue

Section

Section 1. Numerical methods and applications