DOI: https://doi.org/10.26089/NumMet.v19r215

Effect of nanoparticles on the structure of thin films: atomistic simulation results

Authors

  • F.V. Grigoriev
  • V.B. Sulimov
  • A.V. Tikhonravov

Keywords:

structure of glasses and films
molecular dynamics
glassy silicon dioxide
nanoparticles in film structure

Abstract

A model describing the effect of nanoparticles on the structure of thin films structure is proposed. The model is based on the previously developed molecular dynamics method of thin film deposition simulation and is applied to the study of silicon dioxide thin films. A nanoparticle is considered as a fixed object whose interaction with film atoms is described by a spherical symmetric potential. Radial distribution functions are used to study the film structure near the nanoparticle. It is shown that the behavior of these functions is essentially different near nanoparticles in the cases of high-energy and low-energy deposition processes.


Published

2018-04-26

Issue

Section

Section 1. Numerical methods and applications

Author Biographies

F.V. Grigoriev

Lomonosov Moscow State University
• Leading Researcher

V.B. Sulimov

Lomonosov Moscow State University
• Head of Laboratory

A.V. Tikhonravov


References

  1. R. M. Rassel, T. Kim, Z. Shen, et al., “Electrical Properties of SiO_2 Films with Embedded Nanoparticles Formed by SiH_4/O_2 Chemical Vapor Deposition,” J. Vac. Sci. Technol. B 21 (6), 2441-2445 (2003).
  2. H. Amekura and N. Kishimoto, “Implantation of 60 keV Copper Negative Ion into Thin SiO_2 Films on Si: Thermal Stability of Cu Nanoparticles and Recovery of Radiation Damage,” J. Appl. Phys. 94 (2003).
    doi 10.1063/1.1592608
  3. G. Valverde-Aguilar, V. Renteria, and J. A. Garcia-Macedo, “Modeling of Core-Shell Silver Nanoparticles in Nanostructured Sol-Gel Thin Films,” Proc. SPIE 6641 (2007).
    doi 10.1117/12.730872
  4. P. Junlabhut, S. Boonruang, and W. Pecharapa, “Optical Absorptivity Enhancement of SiO_2 Thin Film by Ti and Ag Additive,” Energy Procedia 34, 734-739 (2013).
  5. F. V. Grigoriev, A. V. Sulimov, I. V. Kochikov, et al., “High-Performance Atomistic Modeling of Optical Thin Films Deposited by Energetic Processes,” Int. J. High Perf. Comp. Appl. 29} (2), 184-192 (2015).
  6. F. V. Grigoriev, “Force Fields for Molecular Dynamics Simulation of the Deposition of a Silicon Dioxide Film,” Vestn. Mosk. Univ., Ser. 3: Fiz., No. 6, 93-97 (2015) [Moscow Univ. Phys. Bull. 70 (6), 521-526 (2015)].
  7. F. V. Grigoriev, A. V. Sulimov, E. V. Katkova, et al., “Full-Atomistic Nanoscale Modeling of the Ion Beam Sputtering Deposition of SiO{}_2 Thin Films,” J. Non-Cr. Sol. 448, 1-5 (2016).
  8. F. V. Grigoriev, E. V. Katkova, A. V. Sulimov, et al., “Annealing of Deposited SiO_2 Thin Films: Full-Atomistic Simulation Results,” Opt. Mat. Exp. 6 (12), 3960-3966 (2016).
  9. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, et al., “Molecular Dynamics with Coupling to an External Bath,” J. Chem. Phys. 81 (8), 3684-3690 (1984).
  10. Visual Molecular Dynamics.
    http://www.ks.uiuc.edu/Research/vmd . Cited April 5, 2018.
  11. D. M. Huang, P. L. Geissler, and D. Chandler, “Scaling of Hydrophobic Solvation Free Energies,” J. Phys. Chem. B 105 (28), 6704-6709 (2001).
  12. M. J. Abraham, T. Murtola, R. Schulz, et al., “GROMACS: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers,” SoftwareX 1-2}, 19-25 (2015).