To the orthogonal expansion theory of the solution to the Cauchy problem for second-order ordinary differential equations
Authors
-
O.B. Arushanyan
-
S.F. Zaletkin
Keywords:
ordinary differential equations
Cauchy problem
approximate analytical methods
numerical methods
orthogonal expansions
shifted Chebyshev series
Markov’s quadrature formulas
Abstract
A solvability theorem is proved for a nonlinear system of equations with respect to the approximate Chebyshev coefficients of the highest derivative in an ordinary differential equation. This theorem is a theoretical substantiation for the previously proposed approximate method of solving canonical systems of second-order ordinary differential equations using orthogonal expansions on the basis of Chebyshev polynomials of the first kind.
Section
Section 1. Numerical methods and applications
References
- S. F. Zaletkin, “Numerical Integration of Ordinary Differential Equations Using Orthogonal Expansions,” Mat. Model. 22 (1), 69-85 (2010).
- O. B. Arushanyan, N. I. Volchenskova, and S. F. Zaletkin, “Application of Orthogonal Expansions for Approximate Integration of Ordinary Differential Equations,” Vestn. Mosk. Univ., Ser. 1: Mat. Mekh., No. 4, 40-43 (2010) [Moscow Univ. Math. Bull. 65 (4), 172-175 (2010)].
- O. B. Arushanyan, N. I. Volchenskova, and S. F. Zaletkin, “Calculation of Expansion Coefficients of Series in Chebyshev Polynomials for a Solution to a Cauchy Problem,” Vestn. Mosk. Univ., Ser. 1: Mat. Mekh., No. 5, 24-30 (2012) [Moscow Univ. Math. Bull. 67 (5-6), 211-216 (2012)].
- O. B. Arushanyan and S. F. Zaletkin, “Application of Markov’s Quadrature in Orthogonal Expansions,” Vestn. Mosk. Univ., Ser. 1: Mat. Mekh., No. 6, 18-22 (2009) [Moscow Univ. Math. Bull. 64 (6), 244-248 (2009)].
- S. F. Zaletkin, “Markov’s Formula with Two Fixed Nodes for Numerical Integration and Its Application in Orthogonal Expansions,” Vychisl. Metody Programm. 6, 1-17 (2005).
- I. S. Berezin and N. P. Zhidkov, Computing Methods (Fizmatgiz, Moscow, 1962; Pergamon, Oxford, 1965).