A higher-order difference scheme of the Cabaret class for solving the transport equation


  • A.V. Solovjev
  • A.V. Danilin


Cabaret scheme
transport equation
higher order approximation


A new difference scheme of the Cabaret class with a higher order of accuracy for solving the scalar transport equation is proposed. The order of approximation of this difference scheme is equal to four. The balance-characteristic representation of the scheme is constructed and the dispersion properties are given. For the proposed difference scheme, a number of examples to solve the transport equation for smooth and discontinuous profiles are considered in comparison with the classical Cabaret scheme.





Section 1. Numerical methods and applications

Author Biographies

A.V. Solovjev

A.V. Danilin


  1. V. M. Goloviznin and A. A. Samarskii, “Finite Difference Approximation of Convective Transport Equation with Space Splitting Time Derivative,” Mat. Model. 10 (1), 86-100 (1998).
  2. V. M. Goloviznin and A. A. Samarskii, “Some Characteristics of Finite Difference Scheme ’Cabaret’,” Mat. Model. 10 (1), 101-116 (1998).
  3. A. Iserles, “Generalized Leapfrog Methods,” IMA J. Numer. Anal. 6 (4), 381-392 (1986).
  4. V. M. Goloviznin, S. A. Karabasov, and I. M. Kobrinskii, “Balance-Characteristic Schemes with Separated Conservative and Flux Variables,” Mat. Model. 15 (9), 29-48 (2003).
  5. V. M. Goloviznin, M. A. Zaitsev, S. A. Karabasov, and I. A. Korotkin, New CFD Algorithms for Multiprocessor Computer Systems (Mosk. Gos. Univ., Moscow, 2013) [in Russian].
  6. O. A. Kovyrkina and V. V. Ostapenko, “On Monotonicity of Two-Layer in Time Cabaret Scheme,” Mat. Model. 24 (9), 97-112 (2012) [Math. Models Comput. Simul. 5 (2), 180-189 (2013)].