DOI: https://doi.org/10.26089/NumMet.v19r432

Parallel computations in the hydrogeological computational code GeRa: organization and efficiency

Authors

  • I.V. Kapyrin
  • I.N. Konshin
  • G.V. Kopytov
  • V.K. Kramarenko

Keywords:

groundwater flow
transport in geological media
computational code
parallel computations
speed-up

Abstract

The structure, functionality and parallel computation organization of the computational code GeRa designed for hydrogeological modeling are considered. The principles of multiprocessor task launching on a remote cluster directly from the GeRa graphical user interface are described. The results of parallel computations for three representative models are presented and analyzed from the standpoint of parallel efficiency.


Published

2018-12-24

Issue

Section

Section 1. Numerical methods and applications

Author Biographies

I.V. Kapyrin

I.N. Konshin

G.V. Kopytov

Immanuel Kant Baltic Federal University
• Associate Professor

V.K. Kramarenko


References

  1. I. V. Kapyrin, V. A. Ivanov, G. V. Kopytov, and S. S. Utkin, “Integral Code GeRa for Radioactive Waste Disposal Safety Validation,” Gornyi Zh., No. 10, 44-50 (2015).
  2. V. L. Freedman, X. Chen, S. Finsterle, et al., “A High-Performance Workflow System for Subsurface Simulation,” Environ. Model. Softw. 55, 176-189 (2014).
  3. G. E. Hammond, P. C. Lichtner, and R. T. Mills, “Evaluating the Performance of Parallel Subsurface Simulators: An Illustrative Example with PFLOTRAN,” Water Resour. Res. 50, 208-228 (2014).
  4. O. Kolditz, S. Bauer, L. Bilke, et al., “OpenGeoSys: An Open-Source Initiative for Numerical Simulation of Thermo-Hydro-Mechanical/Chemical (THM/C) Processes in Porous Media,” Environ. Earth Sci. 67 (2), 589-599 (2012).
  5. A. V. Plenkin, A. Yu. Chernyshenko, V. N. Chugunov, and I. V. Kapyrin, “Adaptive Unstructured Mesh Generation Methods for Hydrogeological Problems,” Vychisl. Metody Programm. 16, 518-533 (2015).
  6. PHREEQC (Version 3) - A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations.
    https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc . Cited August 22, 2018.
  7. S. R. Charlton and D. L. Parkhurst, “Modules Based on the Geochemical Model PHREEQC for Use in Scripting and Programming Languages,” Comput. Geosci. 37 (10), 1653-1663 (2011).
  8. Yu. V. Vassilevski, I. N. Konshin, G. V. Kopytov, and K. M. Terekhov, INMOST - Programming Platform and Graphical Environment for Development of Parallel Numerical Models on Various Grids (Mosk. Gos. Univ., Moscow, 2013) [in Russian].
  9. A. A. Danilov, K. M. Terekhov, I. N. Konshin, and Yu. V. Vassilevski, “Parallel Software Platform INMOST: A Framework for Numerical Modeling,” Supercomput. Front. Innov. 2 (4), 55-66 (2015).
  10. PETSc - A Suite of Data Structures and Routines for the Scalable (Parallel) Solution of Scientific Applications Modeled by Partial Differential Equations.
    http://www.mcs.anl.gov/petsc . Cited August 22, 2018.
  11. ParaView - An Open-Source, Multi-Platform Data Analysis and Visualization Application.
    https://www.paraview.org . Cited August 22, 2018.
  12. Qt - Cross-Platform Software Development for Embedded & Desktop.
    https://www.qt.io . Cited August 22, 2018.
  13. ParMETIS - Parallel Graph Partitioning and Fill-Reducing Matrix Ordering.
    http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview . Cited August 22, 2018.
  14. VTK - The Visualization Toolkit.
    https://www.vtk.org . Cited August 22, 2018.
  15. SVN - An Open Source Version Control System.
    https://subversion.apache.org . Cited August 22, 2018.
  16. I. Konshin, I. Kapyrin, K. Nikitin, and K. Terekhov, “Application of the Parallel INMOST Platform to Subsurface Flow and Transport Modelling,” in Lecture Notes in Computer Science (Springer, Heidelberg, 2016), Vol. 9574, pp. 277-286.
  17. I. Konshin and I. Kapyrin, “Scalable Computations of GeRa Code on the Base of Software Platform INMOST,” in Lecture Notes in Computer Science (Springer, Heidelberg, 2017), Vol. 10421, pp. 433-445.
  18. A. I. Rybal’chenko, M. K. Pimenov, P. P. Kostin, et al., Underground Disposal of Liquid Radioactive Wastes (IzdAT, Moscow, 1994) [in Russian].
  19. K. A. Boldyrev, I. V. Kapyrin, L. I. Konstantinova, and E. V. Zakharova, “Simulation of Strontium Sorption onto Rocks at High Concentrations of Sodium Nitrate in the Solution,” Radiokhimiya 58 (3), 211-217 (2016) [Radiochemistry 58 (3), 243-251 (2016)].
  20. Cluster at the Institute of Numerical Mathematics, Russian Academy of Sciences.
    http://cluster2.inm.ras.ru . Cited August 22, 2018.