Tensor decompositions for solving the equations of mathematical models of aggregation with multiple collisions of particles
Authors
-
D.A. Stefonishin
-
S.A. Matveev
-
A.P. Smirnov
-
E.E. Tyrtyshnikov
Keywords:
multiple collision Smoluchowski equation
kinetics of aggregation processes
predictor-corrector scheme
low-rank tensor approximations
discrete convolution
Abstract
Efficient methods for the numerical solving of a Cauchy problem for systems of Smoluchowski-type kinetic equations of aggregation with multiple collisions of particles are proposed. The developed methods are based on the tensor representations of kinetic coefficient arrays. The canonical, Tucker, and tensor train (TT) decompositions are compared. The computational complexity of these tensor representations is estimated for a second-order Runge-Kutta. The efficiency of the proposed methods for the systems with collisions of up to five particles is shown in a series of numerical experiments for the canonical and TT-decompositions.
Section
Section 1. Numerical methods and applications
References
- V. A. Galkin, Smoluchowski equation (Fizmatlit, Moscow, 2001) [in Russian].
- F. Leyvraz, “Scaling Theory and Exactly Solved Models in the Kinetics of Irreversible Aggregation,” Phys. Rep. 383 (2-3), 95-212 (2003).
- M. Smoluchowski, “Versuch Einer Mathematischen Theorie der Koagulationskinetik Kolloider Lösungen,” Z. Phys. Chem. 92, 129-168 (1918).
- P. L. Krapivsky, “Aggregation Processes with n-Particle Elementary Reactions,” J. Phys. A: Math. Gen. 24 (19), 4697-4703 (1991).
- P. L. Krapivsky, S. Redner, and E. Ben-Naim, A Kinetic View of Statistical Physics (Cambridge Univ. Press, Cambridge, 2010).
- Y. Jiang and H. Gang, “Generalized Smoluchovski Equation with Gelation,” Phys. Rev. B: Condens. Matter 39 (7), 4659-4665 (1989).
- Z. A. Melzak, “A Scalar Transport Equation,” Trans. Am. Math. Soc. 1957. 85 (2), 547-560 (1957).
- S. A. Matveev, A. P. Smirnov, and E. E. Tyrtyshnikov, “A Fast Numerical Method for the Cauchy Problem for the Smoluchowski Equation,” J. Comput. Phys. 282, 23-32 (2015).
- F. E. Kruis, A. Maisels, and H. Fissan, “Direct Simulation Monte Carlo Method for Particle Coagulation and Aggregation,” AIChE J. 46 (9), 1735-1742 (2000).
- G. Palaniswaamy and S. K. Loyalka, “Direct Simulation Monte Carlo Aerosol Dynamics: Coagulation and Collisional Sampling,” Nucl. Technol. 156 (1), 29-38 (2006).
- S. A. Matveev, E. E. Tyrtyshnikov, A. P. Smirnov, and N. V. Brilliantov, “A Fast Numerical Method for Solving the Smoluchowski-Type Kinetic Equations of Aggregation and Fragmentation Processes,” Vychisl. Metody Programm. 15, 1-8 (2014).
- D. A. Stefonishin, S. A. Matveev, A. P. Smirnov, and E. E. Tyrtyshnikov, “An Efficient Finite-Difference Method for Solving Smoluchowski-Type Kinetic Equations of Aggregation with Three-Body Collisions,” Vychisl. Metody Programm. 19, 261-269 (2018).
- F. L. Hitchcock, “Multiple Invariants and Generalized Rank of a p-Way Matrix or Tensor,” J. Math. Phys. 7 (1), 39-79 (1927).
- R. A. Harshman, Foundations of the PARAFAC Procedure: Models and Conditions for an , “Explanatory’’ Multimodal Factor Analysis (Univ. of California at Los Angeles, Los Angeles, 1970).
- G. Beylkin and M. J. Mohlenkamp, “Algorithms for Numerical Analysis in High Dimensions,” SIAM J. Sci. Comput. 26 (6), 2133-2159 (2005).
- L. R. Tucker, “Some Mathematical Notes on Three-Mode Factor Analysis,” Psychometrika 31 (3), 279-311 (1966).
- L. de Lathauwer, B. de Moor, and J. Vandewalle, “A Multilinear Singular Value Decomposition,” SIAM J. Matrix Anal. Appl. 21 (4), 1253-1278 (2000).
- I. V. Oseledets and E. E. Tyrtyshnikov, “Breaking the Curse of Dimensionality, Or How to Use SVD in Many Dimensions,” SIAM J. Sci. Comput. 31 (5), 3744-3759 (2009).
- I. V. Oseledets, “Tensor-Train Decomposition,” SIAM J. Sci. Comput. 33 (5), 2295-2317 (2011).
- I. V. Oseledets and E. E. Tyrtyshnikov, “TT-Cross Approximation for Multidimensional Arrays,” Linear Algebra Appl. 432 (1), 70-88 (2010).
- E. E. Tyrtyshnikov, A Brief Introduction to Numerical Analysis (Birkh854user, Basel, 2012).
- G. Beylkin and L. Monzón, “On Approximation of Functions by Exponential Sums,” Appl. Comput. Harmon. Anal. 19 (1), 17-48 (2005).