DOI: https://doi.org/10.26089/NumMet.v19r438

On some properties of the projection operator for a class of stabilization algorithms

Authors

  • A.A. Kornev

Keywords:

numerical methods
projection operator
stabilization

Abstract

The projection operator Q[a] acting from the linear space of the functions a(x) ∈ span{sin ix, i ≥ 1} given on the segment [0,π] onto the subspace of the functions ã(x) ∈ span{sin ix, i > i0} is studied theoretically and numerically. The corresponding projection is performed along the subspace of the functions l(x) ∈ span{sin ix, i=1,...,i0}, where sin ix = χ δ(x)sin ix, χ δ(x) is the characteristic function χ δ(x) of the interval [0,δ]. The obtained results are used to solve the problem of stabilization with respect to the initial data of solutions to the model nonstationary equations.


Published

2018-12-24

Issue

Section

Section 1. Numerical methods and applications

Author Biography

A.A. Kornev


References

  1. A. V. Fursikov, “Stabilizability of a Quasi-Linear Parabolic Equation by Means of a Boundary Control with Feedback,” Mat. Sb. 192 (4), 115-160 (2001) [Sb. Math. 192 (4), 593-639 (2001)].
  2. A. V. Fursikov, “Stabilizability of Two-Dimensional Navier-Stokes Equations with Help of a Boundary Feedback Control,” J. Math. Fluid Mech. 3 (3), 259-301 (2001).
  3. A. V. Fursikov, “Real Processes and Realizability of a Stabilization Method for Navier-Stokes Equations by Boundary Feedback Control,” in Nonlinear Problems of Mathematical Physics and Related Topics (Tamara Rozhkovskaya, Novosibirsk, 2002), Vol. 2, pp. 127-164.
  4. E. V. Chizhonkov, “Numerical Aspects of One Stabilization Method,” Russ. J. Numer. Anal. Math. Model. 18 (5), 363-376 (2003).
  5. E. V. Chizhonkov, “On Projection Operators for Numerical Stabilization,” Vychisl. Metody Programm. 5, 161-169 (2004).
  6. A. A. Kornev, “On an Iterative Method for the Construction of Hadamard Mustaches,” Zh. Vychisl. Mat. Mat. Fiz. 44 (8), 1346-1355 (2004) [Comput. Math. Math. Phys. 44 (8), 1274-1283 (2004)].
  7. A. A. Kornev and A. V. Ozeritzkii, “On Approximate Projecting on a Stable Manifold,” Zh. Vychisl. Mat. Mat. Fiz. 45 (9), 1580-1586 (2005) [Comput. Math. Math. Phys. 45 (9), 1525-1530 (2005)].
  8. E. Yu. Vedernikova and A. A. Kornev, “To the Problem of Rod Heating,” Vestn. Mosk. Univ., Ser. 1: Mat. Mekh., No. 6, 10-16 (2014) [Moscow Univ. Math. Bull. 69 (6), 237-241 (2014)].
  9. A. A. Kornev, “Simulating the Stabilization Process by Boundary Conditions of a Quasi-Two-Dimensional Flow with a Four-Vortex Structure,” Mat. Model. 29 (11), 99-110 (2017) [Math. Models Comput. Simul. 10 (3), 363-372 (2018)].
  10. A. A. Kornev, “The Structure and Stabilization by Boundary Conditions of an Annular Flow of Kolmogorov Type,” Russ. J. Numer. Anal. Math. Model. 32 (4), 245-251 (2017).