Low-frequency 3D ultrasound tomography: dual-frequency method


  • A.V. Goncharsky
  • S.Yu. Romanov
  • S.Yu. Seryozhnikov


ultrasound tomography
wave equation
nonlinear coefficient inverse problem
iterative algorithms


This paper is devoted to the development of efficient methods for 3D acoustic tomography. The inverse problem of acoustic tomography is formulated as a coefficient inverse problem for a hyperbolic equation where the sound speed and the absorption factor are unknown in three-dimensional space. The mathematical model describes the effects of diffraction, refraction, multiple scattering, and the ultrasound absorption. Substantial difficulties in solving this inverse problem are due to its nonlinear nature. A method of low-frequency 3D acoustic tomography based on using short sounding pulses of two different central frequencies not exceeding 500 kHz is proposed. The method employs an iterative gradient-based minimization algorithm at the higher frequency with the initial approximation of unknown coefficients obtained by solving the inverse problem at the lower frequency. The efficiency of the proposed method is illustrated by solving a model problem with acoustic parameters close to those of soft tissues. The proposed method makes it possible to obtain a spatial resolution of 2–3 mm while the sound speed contrast does not exceed 10%. The developed algorithms can be efficiently parallelized using GPU clusters.





Section 1. Numerical methods and applications

Author Biographies

A.V. Goncharsky

Lomonosov Moscow State University
• Head of Laboratory

S.Yu. Romanov

Lomonosov Moscow State University
• Leading Researcher

S.Yu. Seryozhnikov


  1. C. H. Chang, S. W. Huang, H. C. Yang, et al., “Reconstruction of Ultrasonic Sound Velocity and Attenuation Coefficient Using Linear Arrays: Clinical Assessment,” Ultrasound Med. Biol. 33 (11), 1681-1687 (2007).
  2. N. Duric, P. Littrup, C. Li, et al., “Breast Ultrasound Tomography: Bridging the Gap to Clinical Practice,” in Proc. SPIE Vol. 8320, Medical Imaging 2012: Ultrasonic Imaging, Tomography, and Therapy (2012).
    doi 10.1117/12.910988
  3. V. A. Burov, D. I. Zotov, and O. D. Rumyantseva, “Reconstruction of the Sound Velocity and Absorption Spatial Distributions in Soft Biological Tissue Phantoms from Experimental Ultrasound Tomography Data,” Akust. Zh. 61 (2), 254-273 (2015) [Acoust. Phys. 61 (2), 231-248 (2015)].
  4. R. Jiří k, I. Peterlí k, N. Ruiter, et al., “Sound-Speed Image Reconstruction in Sparse-Aperture 3-D Ultrasound Transmission Tomography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59 (2), 254-264 (2012).
  5. J. Wiskin, D. Borup, M. Andre, et al., “Three-Dimensional Nonlinear Inverse Scattering: Quantitative Transmission Algorithms, Refraction Corrected Reflection, Scanner Design, and Clinical Results,” J. Acoust. Soc. Am. 133 (2013).
    doi 10.1121/1.4805138
  6. J. Mamou and M. L. Oelze (Eds.), Quantitative Ultrasound in Soft Tissues (Springer, Dordrecht, 2013).
  7. R. K. Saha and S. K. Sharma, “Validity of a Modified Born Approximation for a Pulsed Plane Wave in Acoustic Scattering Problems,” Phys. Med. Biol. 50, 2823-2836 (2005).
  8. B. Zeqiri, C. Baker, G. Alosa, et al., “Quantitative Ultrasonic Computed Tomography Using Phase-Insensitive Pyroelectric Detectors,” Phys. Med. Biol. 58, 5237-5268 (2013).
  9. M. Sak, N. Duric, P. Littrup, et al., “Using Speed of Sound Imaging to Characterize Breast Density,” Ultrasound Med. Biol. 43 (1), 91-103 (2017).
  10. R. Stotzka, N. V. Ruiter, T. O. Mueller, et al., “High Resolution Image Reconstruction in Ultrasound Computer Tomography Using Deconvolution,” in Proc. SPIE Vol. 5750, Medical Imaging 2005: Ultrasonic Imaging and Signal Processing (2005).
    doi 10.1117/12.595149
  11. J. Wiskin, D. T. Borup, S. A. Johnson, and M. Berggren, “Non-Linear Inverse Scattering: High Resolution Quantitative Breast Tissue Tomography,” J. Acoust. Soc. Am. 131 (5), 3802-3813 (2012).
  12. M. Pérez-Liva, J. L. Herraiz, J. M. Ud{í}as, et al., “Time Domain Reconstruction of Sound Speed and Attenuation in Ultrasound Computed Tomography Using Full Wave Inversion,” J. Acoust. Soc. Am. 141 (3), 1595-1604 (2017).
  13. F. Natterer, “An Algorithm for 3D Ultrasound Tomography,” in Lecture Notes in Physics (Springer, Berlin, 1997), Vol. 486, pp. 216-225.
  14. R. J. Lavarello and M. L. Oelze, “Tomographic Reconstruction of Three-Dimensional Volumes Using the Distorted Born Iterative Method,” IEEE Trans. Med. Imaging 28 (10), 1643-1653 (2009).
  15. A. V. Goncharskii and S. Yu. Romanov, “Two Approaches to the Solution of Coefficient Inverse Problems for Wave Equations,” Zh. Vychisl. Mat. Mat. Fiz. 52 (2), 263-269 (2012) [Comput. Math. Math. Phys. 52 (2), 245-251 (2012)].
  16. F. Natterer, “Possibilities and Limitations of Time Domain Wave Equation Imaging,” in Contemporary Mathematics (Am. Math. Soc. Press, Providence, 2011), Vol. 559, pp. 151-162.
  17. L. Beilina, M. V. Klibanov, and M. Yu. Kokurin, “Adaptivity with Relaxation for Ill-Posed Problems and Global Convergence for a Coefficient Inverse Problem,” J. Math. Sci. 167 (3), 279-325 (2010).
  18. A. V. Goncharsky and S. Y. Romanov, “Supercomputer Technologies in Inverse Problems of Ultrasound Tomography,” Inverse Probl. 29 (7) (2013).
    doi 10.1088/0266-5611/29/7/075004
  19. A. V. Goncharsky, S. Y. Romanov, and S. Y. Seryozhnikov, “A Computer Simulation Study of Soft Tissue Characterization Using Low-Frequency Ultrasonic Tomography,” Ultrasonics 67, 136-150 (2016).
  20. A. V. Goncharsky, S. Y. Romanov, and S. Y. Seryozhnikov, “Supercomputer Technologies in Tomographic Imaging Applications,” Supercomput. Frontiers Innov. 3 (1), 41-66 (2016).
  21. A. V. Goncharsky and S. Y. Romanov, “Inverse Problems of Ultrasound Tomography in Models with Attenuation,” Phys. Med. Biol. 59 (8), 1979-2004 (2014).
  22. A. V. Goncharsky, S. Y. Romanov, and S. Y. Seryozhnikov, “Inverse Problems of 3D Ultrasonic Tomography with Complete and Incomplete Range Data,” Wave Motion 51 (3), 389-404 (2014).
  23. A. V. Goncharsky, S. Y. Romanov, and S. Y. Seryozhnikov, “The Problem of Choosing Initial Approximations in Inverse Problems of Ultrasound Tomography,” Vychisl. Metody Programm. 18, 312-321 (2017).
  24. W. Chen and S. Holm, “Fractional Laplacian Time-Space Models for Linear and Nonlinear Lossy Media Exhibiting Arbitrary Frequency Power-Law Dependency,” J. Acoust. Soc. Am. 115 (4), 1424-1430.
  25. A. V. Goncharsky, S. Yu. Romanov and S. Yu. Seryozhnikov, “Low-Frequency Three-Dimensional Ultrasonic Tomography,” Dokl. Akad. Nauk 468 (3), 268-271 (2016) [Dokl. Phys. 61 (5), 211-214 (2016)].
  26. A. V. Goncharsky and S. Y. Romanov, “Iterative Methods for Solving Coefficient Inverse Problems of Wave Tomography in Models with Attenuation,” Inverse Probl. 33 (2) (2017).
    doi 10.1088/1361-6420/33/2/025003
  27. A. V. Goncharsky, S. Yu. Romanov, and S. Yu. Seryozhnikov, “Inverse Problems of Sounding Pulse Formation in Ultrasound Tomography: Mathematical Modeling and Experiments,” Vychisl. Metody Programm. 19, 150-157 (2018).
  28. Y. Chen, “Inverse Scattering via Heisenberg’s Uncertainty Principle,” Inverse Probl. 13 (2), 253-282 (1997).
  29. S. A. Matveev, D. A. Zheltkov, E. E. Tyrtyshnikov, and A. P. Smirnov, “Tensor Train Versus Monte Carlo for the Multicomponent Smoluchowski Coagulation Equation,” J. Comput. Phys. 316, 164-179 (2016).
  30. A. V. Kuzhuget, L. Beilina, M. V. Klibanov, et al., “Blind Backscattering Experimental Data Collected in the Field and an Approximately Globally Convergent Inverse Algorithm,” Inverse Probl. 28 (9) (2012).
    doi 10.1088/0266-5611/28/9/095007
  31. A. N. Tikhonov, “Solution of Incorrectly Formulated Problems and the Regularization Method,” Dokl. Akad. Nauk SSSR 151 (3), 501-504 (1963) [Sov. Math. Dokl. 5 (4), 1035-1038 (1963)].
  32. A. Bakushinsky and A. Goncharsky, Ill-Posed Problems: Theory and Applications (Kluwer, Dordrecht, 1994).
  33. A. N. Tikhonov, A. V. Goncharsky, V. V. Stepanov, and A. G. Yagola, Numerical Methods for the Solution of Ill-Posed Problems (Springer, Dordrecht, 1995; Nauka, Moscow, 1990).
  34. F. Natterer, “Sonic Imaging,” in Handbook of Mathematical Methods in Imaging (Springer, New York, 2015), pp. 1253-1278.
  35. L. Beilina and M. V. Klibanov, Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems (Springer, New York, 2012).
  36. A. V. Goncharsky, S. Yu. Romanov, and S. Yu. Seryozhnikov, “Inverse Problems of Layer-by-Layer Ultrasonic Tomography with the Data Measured on a Cylindrical Surface,” Vychisl. Metody Programm. 18, 267-276 (2017).
  37. S. Romanov, “Optimization of Numerical Algorithms for Solving Inverse Problems of Ultrasonic Tomography on a Supercomputer,” in Communications in Computer and Information Science (Springer, Cham, 2017), Vol. 793, pp. 67-79.
  38. S.-Y. Mu and H.-W. Chang, “Dispersion and Local-Error Analysis of Compact LFE-27 Formula for Obtaining Sixth-order Accurate Numerical Solutions of 3D Helmholtz Equation,” Prog. Electromagn. Res. 143, 285-314 (2013).
  39. B. Engquist and A. Majda, “Absorbing Boundary Conditions for the Numerical Simulation of Waves,” Math Comp. 31, 629-651 (1977).
  40. A. Goncharsky and S. Seryozhnikov, “The Architecture of Specialized GPU Clusters Used for Solving the Inverse Problems of 3D Low-Frequency Ultrasonic Tomography,” in Communications in Computer and Information Science (Springer, Cham, 2017), Vol. 793, pp. 363-375.
  41. E. G. Bazulin, A. V. Goncharsky, S. Y. Romanov, and S. Y. Seryozhnikov, “Parallel CPU- and GPU-Algorithms for Inverse Problems in Nondestructive Testing,” Lobachevskii J. Math. 39 (4), 486-493 (2018).